320 likes | 640 Views
Estatística. Prof : Msc Engª Heloísa Bernardo Email: heloisabernardo@hotmail.com. Aula 2 Medidas de Posição e Dispersão Medidas de Associação. Exercício.
E N D
Estatística Prof: MscEngª Heloísa Bernardo Email: heloisabernardo@hotmail.com
Aula 2Medidas de Posição e DispersãoMedidas de Associação Profª Heloísa Bernardo
Exercício Segundo um jornal local, uma pessoa gasta 45 minutos ouvindo música. Os seguintes dados foram obtidos para o número de minutos gastos ouvindo música em uma amostra de 30 indivíduos. Calcule a média Os dados são coerentes com a média anunciada? Calcule a mediana
Aula 2 Aula 2 Medidas de Dispersão Medidas de Associação
MEDIDAS DE DISPERSÃO Amplitude Maior valor – menor valor Foi pesquisado o preço de um produto e foram encontrados os seguintes resultados: Qual a média e a mediana e a moda? Qual a amplitude da amostra?
VARIÂNCIA Mede a variabilidade em torno da média. Variância da População: Variância da Amostra
Desvio Padrão É a raiz quadrada da variância. Desvio Padrão da População: Desvio Padrão da Amostra
Desvio Padrão e Variância Como nesse caso temos uma amostra:
Coeficiente de Variação O coeficiente de variação é uma estatística útil para comparar a variabilidade de variáveis que tenham diferentes desvios padrão e diferentes médias:
Coeficiente de Variação No nosso exemplo: Indica que o desvio padrão é 30,69% do valor da média da amostra
Medidas de Posição Relativa Usando a média e o desvio padrão, podemos determinar a posição relativa de qualquer observação. • Para cada observação podemos calcular a posição relativa:
Medidas de Posição Relativa • Para cada observação podemos calcular a posição relativa:
Detecção de pontos fora da curva Em algumas situações podemos ter uma ou mais observações com valores excepcionalmente grandes ou pequenos. Valores extremos são chamados de pontos fora da curva, ou “outliers” Um ponto fora da curva pode ser um dado coletado erroneamente e pode ser eliminado;
Teorema de Chebyshev Pelo menos 1-1/z2 dos valores de dados precisam estar dentro de z desvios padrão da média, onde z é qualquer valor > 1
Teorema de Chebyshev Implicações do teorema: Pelo menos 75% dos valores dos dados devem estar entre 2 desvios padrão em relação à média Pelo menos 89% dos valores precisam estar entre 3 desvios padrão da média
Teorema de Chebyshev Regra Empírica Para dados que tem distribuição em forma de sino Aproximadamente 68% dos dados estarão entre 1 desvio padrão da média Aproximadamente 95% dos dados estarão entre 2 desvios padrão da média
Detecção de pontos fora da curva Ou erroneamente registrado, e pode ser corrigido; Ou ainda um ponto fora da curva pode ser um dado não usual mas corretamente registrado. Nesse caso o dado permanece.
Detecção de pontos fora da curva Para distribuições com forma de sino, consideramos pontos fora da curva aqueles que apresentam z>3, ou seja, que estão distantes da média mais do que 3 desvios padrão.
Associação entre duas variáveis Muitas vezes estamos interessados na relação entre duas variáveis. Exemplo: relação entre número de comerciais mostrados no fim de semana e as vendas da loja durante a semana
Associação entre duas variáveis Podemos avaliar graficamente, ou medir por meio de uma medida chamada COVARIÂNCIA.
COVARIÂNCIA. Obs: se estivermos calculando a covariância da população, dividiremos por N, ao invés de n-1
Coeficiente de Correlação (pearson) Sxy = covariância x,y Sx = desvio padrão da variável x Sy = desvio padrão da variável y
Coeficiente de Correlação (pearson) Interpretação do coeficiente de correlação: O coeficiente de correlação mede a força de relacionamento entre as variáveis. No nosso exemplo, concluímos que existe forte relação entre as variáveis, indicando que existe uma relação positiva entre o número de comerciais e as vendas
Coeficiente de Correlação (pearson) O coeficiente de correlação varia entre -1 e 1