170 likes | 299 Views
Rappel. Diagonalisation. Transformations linéaires. Aujourd’hui. Systèmes dynamiques: discrets; continus. (valeurs propres complexes). 12. Systèmes dynamiques. L’approche moderne en théorie de la commande utilise la représentation d’états .
E N D
Rappel... • Diagonalisation. • Transformations linéaires.
Aujourd’hui • Systèmes dynamiques: • discrets; • continus. (valeurs propres complexes)
12. Systèmes dynamiques • L’approche moderne en théorie de la commande utilise la représentation d’états. • Cette méthode fait beaucoup appel à l’algèbre linéaire. • On y étudie, entre autres, la réponse enrégime permanent.
Régime permanent Le régime permanent est analogue au comportement à long terme d’un système xk+1 = Axk que nous avons déjà étudié pour le cas où x0 est un vecteur propre de A. Note: systèmes discrets et continus.
Systèmes discrets 2 2 Équations aux différences xk+1 = Axk avec x0 = c1v1 + c2v2 où v1 et v2 sont les vecteurs propres de A avec les valeurs propres 1 et 2.
Systèmes discrets 2 2 (suite) x1 = Ax0 = A(c1v1 + c2v2 ) = c11v1 + c2 2v2 x2 = Ax1 = A(c11v1 + c2 2v2) = c1 (1)2v1 + c2 (2)2v2 En général: xk = c1 (1)kv1 + c2 (2)kv2
Systèmes discrets n n On peut généraliser le cas 2 2. x0 = c1v1 + c2v2 +… + cnvn xk = c1 (1)kv1 +c2 (2)kv2 +… + cn (n)kvn Note: on suppose que Span{v1, …, vn} = Rn, i.e. v1, …, vn sont linéairement indépendants.
Description graphique des solutions • Systèmes 2 2. xk+1 = Axk • On cherche à savoir ce qui arrive lorsquek .
Changement de variables • Jusqu’ici on a traité du cas (facile) d’une matrice diagonale. Qu’arrive-t-il si A n’est pas une matrice diagonale?
Changement de variables (suite) • Soit xk+1 = Axk • On définit une autre séquence: yk = P-1xk, i.e. xk = Pyk. où A = PDP-1 (diagonalisation de A). • Donc, Pyk+1 = APyk = (PDP-1)Pyk = PDyk. • P-1yk+1 = Dyk
Valeurs propres complexes • A n’est pas diagonalisable dans Rn. • On peut quand même illustrer le comportement du système.
Systèmes continus • Équations différentielles. • Soit le système d’équations suivant: x1’ = a11x1 + … + a1nxn x2’ = a21x1 + … + a2nxn …. xn’ = an1x1 + … + annxn x’ = Ax
Systèmes continus - solutions • Une solution de ce système est une fonction satisfaisant x’ = Ax pour t 0, par exemple. • x’ = Ax est une équation linéaire, car la dérivée et les opérations matricielles sont linéaires.
Linéarité • Donc, si u et v sont des solutions de x’ = Ax, alors cu + dv est aussi une solution: (cu + dv)’ = cu’ + dv’ = cAu + dAv = A(cu + dv) • Superposition des solutions. • 0 est aussi une solution.
Linéarité (suite) • On peut dire que l’ensemble des solutions est un sous-espace de l’ensemble de toutes les fonctions continues dans Rn. • On peut trouver un ensemble de solutions fondamentales. • Si A est nn, on a n fonctions linéairement indépendantes dans cet ensemble base.
Conditions initiales • Si on spécifie x0 (conditions initiales), alors le problème se ramène à calculer la fonction unique: x’ = Ax et x(0) = x0
Prochain cours... • Orthogonalité. • Produit scalaire, module; • Ensembles orthogonaux.