1 / 82

5. OPTIKAI SPEKTROSZKÓPIA

5. OPTIKAI SPEKTROSZKÓPIA. 5.1 A Born-Oppenheimer közelítés. Modell. Több pozitív töltésű részecske (atommag) és sok negatív töltésű részecske (elektron) - mindegyik mozog. A Schrödinger-egyenlet általános formában. Többelektronos molekulák Schrödinger-egyenlete. i,j: elektronok indexe

aurora
Download Presentation

5. OPTIKAI SPEKTROSZKÓPIA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 5. OPTIKAI SPEKTROSZKÓPIA

  2. 5.1 A Born-Oppenheimer közelítés

  3. Modell Több pozitív töltésű részecske (atommag) és sok negatív töltésű részecske (elektron) - mindegyik mozog.

  4. A Schrödinger-egyenlet általános formában

  5. Többelektronos molekulák Schrödinger-egyenlete i,j: elektronok indexe k, l: magok indexe

  6. A többelektronos atomok Schrödinger-egyenlete sem oldható meg analitikusan, ez még kevésbé.

  7. Max Born (1882-1970) Robert Oppenheimer (1904-1967)

  8. A megoldáshoz használt közelítés • Born-Oppenheimer-közelítés • különválasztjuk az atommagok és az elektronok mozgását (Indoklás: a magok sokkal nehezebbek, így lassabban mozognak, mint az elektronok), és két külön Schrödinger-egyenletet írunk fel. • Elektronok mozgására: álló magok terében röpködnek az elektronok • Magok mozgására: a magok a hozzájuk tapasztott elektronokkal mozognak (Elefántcsorda és a legyek…)

  9. Elektronok mozgására: rögzített magokat tartalmazó molekula Schrödinger-egyenlete kimarad konstans Egyensúlyi geometria: minimális

  10. Magok mozgására: mozgó magokat és tapasztott elektronokat tartalmazó molekula Schrödinger-egyenlete Ez az egyenlet elválaszthatatlan az előzőtől! : a magokhoz csatolt elektronok mozgásának figyelembevétele, azt fejezi ki, hogy a magok elmozdulásával megváltozik az elektronállapot. Úgy kapjuk meg, hogy a rögzített magokat tartalmazó Schrödinger-egyenletet megoldva kiválasztjuk Ee függését a magkoordinátától.

  11. További közelítés: a magok mozgására felírt Schrödinger-egyenlet felbontása A forgó mozgás sokkal lassabb, mint a rezgőmozgás. : forgómozgásra (rotáció) : rezgőmozgásra (vibráció) Ezek alapján külön vizsgálható: - az elektronok mozgása - a forgó mozgás - a rezgő mozgás

  12. Célok • • átmenetek valószínűségének (spektrumvonalak erősségének) • meghatározása • kiválasztási szabályok levezetése

  13. 5.2. Az optikai színképek jellemzői

  14. A molekula mozgása felbontható az alábbi összetevőkre: 1. Az elektronok mozgása a rögzített magok terében 2. A magok rezgése 3. A rögzített magok közös forgása

  15. Az elektronok mozgásához tartozó kvantált állapotok: Ee0, Ee1, Ee2…. Ezen állapotok közötti átmenet ultraibolya vagy látható fény elnyelésével jár.

  16. A rezgőmozgáshoz tartozó kvantált állapotok: Ev0, Ev1, Ev2…. Ezen állapotok közötti átmenet infravörös fény elnyelésével jár.

  17. A forgó mozgáshoz tartozó kvantált állapotok: Er0, Er1, Er2…. Ezen állapotok közötti átmenet mikrohullámú fény elnyelésével jár.

  18. Elektrongerjesztési /UV-látható spektroszkópia Rezgési / infravörös spektroszkópia Forgási / mikrohullámú spektroszkópia Optikai spektroszkópia

  19. A színképek jellemzőit nézzük meg az alábbi példán: „Níluskék A” festék UV-látható színképe oldószer acetonitril, c = 210-5 mol/dm3.

  20. „Níluskék A” festék (bázis)

  21. „Níluskék A” festék UV-látható abszorpciós spektruma

  22. A mért spektrumok nem vonalak összessége, hanem folytonos függvények! I() fény hullámhossza áteresztett fény intenzitása

  23. A hullámhossz megadása UV-látható színkép: az elnyelt fény hullámhossza (, nm-ben) Infravörös színkép: az elnyelt fény hullámszáma (*  1/, cm-1-ben) Mikrohullámú színkép: az elnyelt fény frekvenciája ( MHz, GHz-ben)

  24. Az intenzitás megadása I0 I Transzmisszió Abszorbancia

  25. Lambert - Beer törvény  abszorciós koefficiens (dm3mol-1cm-1) c koncentráció (mol/dm3)  úthossz (küvetta vastagság) (cm) Az abszorbancia arányos a koncentrációval!

  26. A spektrumsávok jellemzői - a sávmaximum adatai - a sávok intenzitása - a sávok szélessége

  27. A sávok jellemzőinek megadása A sávmaximumok adatait tüntetik fel max, max, vagy *max — Amax, vagy max formájában max független a koncentrációtól! A sávintenzitást a sáv alatti területként értelmezik: A sáv szélességét félértékszélesség formájában adják meg: 1/2,  1/2, ill. *1/2 az Amax/2-höz tartozó két spektrumpont távolsága

  28. „Níluskék A” festék UV-látható abszorpciós spektruma

  29.  = 499 nm A = 0,7439

  30.  = 259 nm A = 0,5634  = 499 nm A = 0,7439  = 305 nm A = 0,2241

  31.  = 499 nm A = 0,7438  =

  32.  = 499 nm A = 0,7438  = 534 nm A = 0,3719  = 452 nm A = 0,3719  =

  33.  = 499 nm A = 0,7438  = 534 nm A = 0,3719  = 452 nm A = 0,3719  = 82 nm

  34. 5.3. Az optikai színképek értelmezése

  35. A spektrumok jellemzőinek elmélete Schrödinger-egyenlet Megoldásai a 0(), 1(), 2()... állapotfüggvények és a hozzájuk tartozó E0, E1, E2... energia-sajátértékek

  36. En, n() Em, m() A sávmaximumok helyét a Schrödinger-egyenletből kapott energia-sajátértékek különbségének feleltetjük meg.

  37. En, n() Em, m() A sávmaximumok helyét a Schrödinger-egyenletből kapott energia-sajátértékek különbségének feleltetjük meg. max-ot a kiindulási állapot (m ) és a végállapot (n) energiájának különbsége határozza meg: En - Em = hmn

  38. En, n() Em, m() A sávintenzitás a fotonelnyelés valószínűségét tükrözi. Foton és az m-ik állapotban lévő molekula ütközik

  39. „Bimolekuláris reakció!”

  40. „Bimolekuláris reakció!” Sebességi egyenlet: Nm : kisebb energiájú molekulák koncentrációja : a fotonok koncentrációja Amn : az abszorpció sebességi állandója

  41. Amn összekapcsolja a mért sávintenzitásokat a Schrödinger-egyenletből kapott () állapotfüggvényekkel! Kapcsolat a sávintenzitással: NA Avogadro-szám h Planck-állandó c fénysebesség

  42. Kapcsolat az állapotfüggvényekkel: Rmn a ún. átmeneti momentum

  43. Az átmeneti momentum és a dipólusmomentum , a dipólusmomentum operátora ahol qi az i-edik részecske töltése, xi, yi, zi az i-edik részecske helykoordinátái

  44. A sávszélesség A Schrödinger-egyenlet modellje olyan molekula, amely - izolált a többi molekulától, - forog, rezeg, stb. de a tömegközéppontja rögzített, - állapotainak élettartama végtelennek tekinthető („stacionárius állapotok”).

  45. A spektrumvonalak kiszélesedése sávvá az alábbi okokra vezethető vissza: 1. Molekulák közötti kölcsönhatások. A térben egymáshoz közel elhelyezkedő molekulák perturbálják egymás energiaszintjeit, ezért az éles energiaszintek kiszélesednek. A hatás nem kvantált. Szilárd, folyadék és nagynyomású gáz állapotban ez a hatás szabja meg a sávszélességet.

  46. 2. Doppler-effektus: a gázminták molekulái különböző irányokban, különböző sebességgel mozognak. A detektorhoz viszonyított sebességük módosítja az abszorpciós frekvenciát: A sáv alakja a molekulák (nem kvantált) sebesség-eloszlását tükrözi.

  47. 3. Természetes vonalkiszélesedés (Fourier-limit) A molekula állapotainak véges élettartama korlátozza a hozzájuk tartozó energiaértékek pontosságát: Kiindulási állapot kiszélesedése: m  Em  h Végállapot kiszélesedése: n  En  A határozatlansági reláció egyik megnyilvánulása! Ez határozza meg az elvileg elérhető minimális sávszélességet!

  48. 5.4. A molekulák szimmetriája

  49. 4. axiómából levezethető Stacionárius rendszer esetén: állapotfüggvény Hamilton-operátor sajátfüggvénye A Schrödinger-egyenlet megoldásaként kapott sajátfüggvények jellemzik a részecskék tartózkodási valószínűségét.

  50. stacionárius hullámfüggvény tükrözi a molekula szimmetriáját

More Related