330 likes | 568 Views
Η δομή του ατόμου. Ι. Τα κλασικά πρότυπα. Από τον Δημόκριτο μέχρι το σύγχρονο κβαντικό άτομο. Επιμέλεια: Διογένης Κοσμόπουλος 2 ο ΓΕΛ Αργυρούπολης. . Η χρονική εξέλιξη της δομής του ατόμου. ατομική θεωρία Δημόκριτου. ατομική θεωρία Dalton. πρότυπο Schrodinger. πρότυπο
E N D
Η δομή του ατόμου. Ι. Τα κλασικά πρότυπα. Από τον Δημόκριτο μέχρι το σύγχρονο κβαντικό άτομο. Επιμέλεια: Διογένης Κοσμόπουλος2ο ΓΕΛ Αργυρούπολης.
Η χρονική εξέλιξη της δομής του ατόμου. ατομική θεωρία Δημόκριτου ατομική θεωρία Dalton πρότυπο Schrodinger πρότυπο Rutherford ~450 π.Χ ~1800 μ.Χ 1904 μ.Χ 1926 μ.Χ 1913 μ.Χ 1911 μ.Χ πρότυπο Bohr πρότυπο Tomson • Σε διάρκεια 125 χρόνων η εικόνα του ατόμου έχει αλλάξει δραστικά. • Από το πρότυπο της απλής συμπαγής σφαίρας , καταλήξαμε σε • ένα πρότυπο που κυριαρχεί η αβεβαιότητα και η πιθανότητα.
Οι πρώτες ατομικές θεωρίες Δημόκριτος (~450π.Χ.)Dalton (~1800μ.Χ.) Η ύλη δεν είναι συνεχής αλλά αποτελείται από τα μικροσκοπικά σωματίδια αποκαλούμενα άτομα. Τα άτομα είναι συμπαγή και δεν τέμνονται (άτομο α-τομή) Το συμπαγές πρότυπο
Τα κλασικά πρότυπα του ατόμου Το πείραμα του Thomson (1897) qe/me=σταθερό για κάθε μέταλλο.
Το πρότυπο του Thomson (1904) Το σταφιδόψωμο αρνητικά ηλεκτρόνια ουδέτερο άτομο θετικά φορτισμένη ύλη.
Τα κλασικά πρότυπα του ατόμου. Το πείραμα τουRutherford(1910) πηγή ακτίνων a φύλο Au film πέτασμα Υποθετικός σκεδασμός στο πρότυπο Tomson Σκεδασμός στο πρότυπο Rutherford
Το πρότυπο του Rutherford (1911) ηλεκτρόνιο Το πλανητικό πρότυποτου πυρηνικού ατόμου. πυρήνας
Οι αδυναμίες του προτύπου του Rutherfond • Οι τυχαίες τροχιές των ηλεκτρονίων δεν μπορούν να ερμηνεύσουν τις συγκεκριμένες ιδιότητες των ατόμων των στοιχείων. • Είναι σε αντίθεση με την «ηλεκτρομαγνητική θεωρία», όπου κάθε ηλεκτρόνιο που επιταχύνεται (λόγω κυκλικής κίνησης) εκπέμπει ενέργεια με μορφή ηλεκτρομαγνητικών κυμάτων (ακτινοβολίες) συνεχούς φάσματος, ενώ ταυτόχρονα κινείται σπειροειδώς προς τον πυρήνα μέχρι καταστροφής του ατόμου.
Η συνέχιση της διερεύνησης της δομής του ατόμου Κλειδί στην παραπέρα διερεύνηση της δομής του ατόμου είναι η ερμηνεία της φύσης του φωτός και ιδιαίτερα του μηχανισμού που εκπέμπει ακτινοβολία η ύλη.
Τι είναι όμως το φως; Η διατύπωση της ερώτησης κατ' αυτό τον τρόπο, απεικονίζει τον αιτιοκρατικό τρόπο σκέψης που συνεπάγει ότι κάτι δεν μπορεί να είναι συγχρόνως δύο τελείως διαφορετικά πράγματα. και όμως… η απάντηση σε αυτήν την ερώτηση είναι ότι οι γνώσεις μας για το φως είναι τα αποτελέσματα των πειραμάτων, όπου μερικά πειράματα δείχνουν ότι το φως συμπεριφέρεται σαν κύμα και άλλα αποκαλύπτουν ότι το φως είναι ένα ρεύμα σωματιδίων .
Η σωματιδιακή-κβαντική φύση του φωτός. Η ακτινοβολία εκπέμπεται ασυνεχώς σε διακριτές "δέσμες" ενέργειας τα κβάντα φωτός ή φωτόνια. ΜαxPlanck (1900) ενέργεια φωτονίου συχνότητα σταθερά Planck
Το φως έχει διπλή φύση. σωματιδιακό μέγεθος κυματικό μέγεθος • Όλα τα φαινόμενα που συνδέονται με το φως δεν μπορούν να εξηγηθούν μόνο από την κυματική ή μόνο η σωματιδιακή φύση του φωτός. Το φως έχει διπλή υπόσταση όπου συνυπάρχουν και οι δύο φύσεις του, χωρίς η μία φύση του φωτός να αναιρεί την άλλη. • Η εξίσωση της ενέργειας του φωτονίου από μόνη της εμπεριέχει και την σωματιδιακή φύση που φαίνεται στο μέγεθος «ενέργεια Ε φωτονίου» και την κυματική φύση που φαίνεται στο μέγεθος «συχνότητα f του φωτονίου», μέγεθος κατ’ εξοχήν κυματικό.
Οι δυνατές συχνότητες των ηλεκτρομαγνητικών κυμάτων
Ανάλυση φωτός - φάσματα. Μία ακτίνα φωτός μπορεί να περιέχει κύμα μίας μόνο συχνότητας οπότε ονομάζεται μονοχρωματική ακτίνα φωτός ή κύματα πολλών συχνοτήτων οπότε ονομάζεται πολυχρωματική (σύνθετη) ακτίνα φωτός. Ανάλυση φωτός είναι η διαδικασία που επιτυγχάνει τον διαχωρισμό μιας πολυχρωματικής ακτίνας φωτός και φάσμα του φωτός είναι η απεικόνιση του αποτελέσματος της ανάλυσης. Τα φάσματα διακρίνονται στα συνεχή, στα γραμμικά και στα απορροφήσεως.
Συνεχές φάσμα λαμπτήρα πυράκτωσης. σχισμή λαμπτήρας πυράκτωσης πρίσμα 400nm 700nm
Γραμμικό φάσμαατόμων υδρογόνου . σχισμή λυχνία υδρογόνου πρίσμα 410nm 434nm 486nm 656nm Τα γραμμικά φάσματα απεικονίζουν μόνο ορισμένες συχνότητες
Γραμμικά φάσματαατόμων . Η He Νa Είναι σημαντικό να τονίσουμε ότι τα γραμμικά φάσματα διαφορετικών στοιχείων είναι διαφορετικά μεταξύ τους δηλαδή το γραμμικό φάσμα του κάθε στοιχείου είναι χαρακτηριστικό του είδους του στοιχείου και αποτελεί ταυτότητα για το στοιχείο αυτό.
Φάσμα απορρόφησης ατόμων υδρογόνου. 410nm 656nm 434nm 486nm αέριο υδρογόνο σχισμή λαμπτήρας πυράκτωσης πρίσμα Νόμος του Kirchoff Τα στοιχεία απορροφούν μόνο τις συχνότητες που μπορούν να εκπέμπουν.
Το πρότυπο του Bohr(το 1ο κβαντισμένο άτομο) Ο Bohr διατύπωσε δύο συνθήκες που σκιαγραφούν ένα νέο πρότυπο του ατόμου. Οι δύο συνθήκες είναι γνωστές ως μηχανική και οπτική συνθήκη. Οι συνθήκες αυτές αντιβαίνουν σε θεωρίες της φυσικής και γι’ αυτό χαρακτηρίστηκαν αυθαίρετες. Οι συνθήκες έγιναν δεκτές, γιατί μπόρεσαν και εξήγησαν το γραμμικό φάσμα εκπομπής και απορρόφησης του υδρογόνου.
1η μηχανική συνθήκη του Bohr. 1/3 N M L Κ n=1 n=2 n=3 n=4 n= • Τα ηλεκτρόνια των ατόμων έχουν την δυνατότητα να κινούνται μόνο σε αυστηρά καθορισμένες κυκλικές τροχιές γύρο από τον πυρήνα με καθορισμένη (κβαντισμένη) ενέργεια. • Κάθε επιτρεπόμενη τροχιά που ονομάζεται στιβάδα ή φλοιός, συμβολίζεται με τα κεφαλαία γράμματα Κ, L, Μ, N, … και αντιστοιχεί στην τιμή ενός ακέραιου αριθμού n (n=1,2,3…) • που ονομάζεται πρώτος ή κύριος κβαντικός αριθμός.
1η μηχανική συνθήκη του Bohr. 2/3 • Ειδικότερα μόνο για το άτομο του υδρογόνου η στροφορμή και η ενέργεια του ηλεκτρονίου δίνονται από τις σχέσεις: Στροφορμή ηλεκτρονίου Ενέργεια ηλεκτρονίου n (1ος κβαντικός αριθμός)=1,2,3… , Ε1=-13,6eV=-2,1810-18J,
Οι στάθμες ενέργειας ατόμου υδρογόνου στο πρότυπο Βohr. 1η μηχανική συνθήκη του Bohr. 3/3 ενέργεια E = 0 E4 E3 E2 E1 -2,1810-18J
Η θεμελιώδης και οι διεγερμένες καταστάσεις στο άτομο του υδρογόνου. • Tο άτομο στη θεμελιώδη του κατάσταση έχει την μικρότερη δυνατή ενέργεια όπου το ηλεκτρόνιο είναι στην 1η (n=1) στιβάδα. • Tο άτομο είναι δυνατόν να απορροφήσει ενέργεια (διεγερμένη κατάσταση) οπότε το ηλεκτρόνιο μεταβαίνει σε στιβάδα με n2. • Η ενέργεια που απορροφάται είναι ίση με την διαφορά των ενεργειών της αρχικής και της τελικής στιβάδας μετάβασης. Εαπορροφάται = Ετ-Εα
Διέγερση ατόμου υδρογόνου στο πρότυπο Βohr. ενέργεια E = 0 E4 E3 διεγερμένες καταστάσεις E2 διέγερση E1 • Η ενέργεια διέγερσης είναι ίση με την διαφορά των ενεργειών των δύο στιβάδων. θεμελιώδης κατάσταση -2,1810-18J
Ιοντισμός ατόμου υδρογόνου στο πρότυπο Βohr. ενέργεια E = 0 E4 E3 E2 E1 • Ενέργεια 1ου ιοντισμού είναι η ελάχιστη ενέργεια που πρέπει να πάρει το άτομο για να χάσει ένα ηλεκτρόνιο. ιοντισμός Ε1ου ιοντισμού = Ε-Ε1 Ε1ου ιοντισμού = -Ε1 Ε1ου ιοντισμού = 2,1810-18J θεμελιώδης κατάσταση -2,1810-18J
2η (οπτική) συνθήκη του Bohr (1/2). • Tο άτομο δεν εκπέμπει ακτινοβολία όταν το ηλεκτρόνιοκινείται στην ίδια στιβάδα. • Tο άτομο εκπέμπει ακτινοβολία μόνο όταν ηλεκτρόνια μεταπηδήσουν από στιβάδα μεγάλης ενέργειας σε στιβάδα χαμηλότερης ενέργειας..
2η (οπτική) συνθήκη του Bohr (2/2). e- n = 4 • Για κάθε ένα “άλμα” ηλεκτρονίου από στιβάδα nα μεγάλης ενέργειας Εα , σε στιβάδα ητ χαμηλότερης ενέργειας Ετ, εκπέμπεται ένα φωτόνιο. n = 3 n = 2 Πυρήνας n = 1 φωτόνιο • Η συχνότητα του φωτονίου είναι:
Οι αποδιεγέρσεις στο άτομο του υδρογόνουστο πρότυπο Bohr. IR A B C Paschen UV A B C D E Lyman (UV) ιοντισμός E6 E5 656 nm 486 nm 434 nm 410 nm E4 E3 Ενέργεια E2 A B C D Balmer ορατή περιοχή E1
Ερμηνεία του γραμμικού φάσματος εκπομπής και απορρόφησης τωνατόμων υδρογόνου. σχισμή πρίσμα Οι ενέργειες των στιβάδων είναι κβαντισμένες (καθορισμένες). Έτσι και οι συχνότητες των εκπεμπόμενων ή απορροφούμενων φωτονίων είναι καθορισμένες αφού είναι ίσες με την τιμή : λυχνία υδρογόνου 410 410 434 434 486 486 656nm 656nm λαμπτήρας πυράκτωσης
Λειτουργεί μόνο για τα άτομα του υδρογόνου ή τα υδρογονοειδή (μονοηλεκτρονικά) ιόντα π.χ.2Ηe+,3Li2+ και έτσι δεν μπόρεσε να ερμηνεύσει το φάσμα των ακτινοβολιών που εκπέμπουν τα πολυηλεκτρονικά άτομα. Οι αδυναμίες του προτύπου του Bohr • Δεν έχει την δυνατότητα να εξηγήσει τον χημικό δεσμό. • Είναι και αυτό σε αντίθεση με την ηλεκτρομαγνητική θεωρία (όπως και το πρότυπο του Rutherfond).