1 / 27

In-Medium Quarkonia at RHIC and LHC

In-Medium Quarkonia at RHIC and LHC. Ralf Rapp Cyclotron Institute + Dept. of Physics & Astronomy Texas A&M University College Station, TX USA Workshop on “Newest Quarkonia Results” RHIC & AGS Annual Users’ Meeting BNL (Upton, NY), 17.-20.06.14.

betty
Download Presentation

In-Medium Quarkonia at RHIC and LHC

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. In-Medium Quarkonia at RHIC and LHC Ralf Rapp Cyclotron Institute + Dept. of Physics & Astronomy Texas A&M University College Station, TX USA Workshop on “Newest Quarkonia Results” RHIC & AGS Annual Users’ Meeting BNL (Upton, NY), 17.-20.06.14

  2. 1.) Introduction: A “Calibrated” QCD Force V [½GeV] [Kaczmarek et al ‘03] r [½ fm] • Vacuum charm-/bottomonium spectroscopy well described • Confinement?! Operational criterion: linear part of potential • most sensitive to J/y + ’ (EBCoul(J/y) ~ 0.05 GeVvs. 0.6 GeVexp.) • nonperturbative treatment • potential approach in medium?

  3. Outline 1.) Introduction 2.) Quarkonium Transport in Medium 3.) Comparison to RHIC + LHC Data 4.) Conclusions

  4. D - D J/y - c c J/y 2.) Quarkonium Transport in Heavy-Ion Collisions [PBM+Stachel ’00,Thews et al ’01, Grandchamp+RR ‘01, Gorenstein et al ’02, Ko et al ’02, Andronic et al ‘03, Zhuang et al ’05, Ferreiro et al ‘11, …] • Inelastic Reactions: • detailed balance: → - ← J/y + g c + c + X • Rate • Equation: • Theoretical Input: Transport coefficients • - chemical relaxation rate Gy • - equililbrium limit Nyeq(eyB, mc* ,tceq) • Phenomenological Input: • - J/y,cc,y’+c,b initial distributions [pp, pA] • - space-time medium evolution [AA: hydro,...] Observables

  5. 2.1Thermal Charmonium Properties (a) EquilibriumYnumber: - • gc from fixed cc number: • interplay of mc* and • constrain spectral shape by • lattice-QCD correlators eyB mc* (b) Inelastic YWidth q q • controlled by as(parameter) Gy

  6. 2.2 Effect of Partial c-Quark Thermalization on J/y • Relaxation time ansatz: Nyeq (t) ~ Nytherm(t) · [1-exp(-t/tceq)] Microscopic Calculation Impact on Regeneration [Zhao+RR ‘11] [Song,Han, Ko ‘12] • sensitivity of regeneration on charm-quark diffusion

  7. 3.1 Inclusive J/y at SPS + RHIC Strong Binding (U) Weak Binding (F) [Zhao+RR ‘10] • as~0.3, charm relax. tceq = 4(2) fm/c for U(F) vs. ~5(10) from T-matrix • different composition in two scenarios

  8. 3.1.2 J/y pT Spectra + Elliptic Flow at RHIC (strong binding) • shallow minimum at low pT • high pT: • formation time, b feeddown, Cronin • small v2limits regeneration, • but does not exclude it

  9. 3.1.3 J/y Excitation Function: BES at RHIC PHENIX (forward y) STAR (central y) [Grandchamp +RR ’02] • suppression pattern varies little (expected from transport) • quantitative pp + pA baseline critical to extract systematics

  10. 3.2.1 J/y Predictions at LHC [Zhao+RR ‘11] • regeneration becomes dominant • uncertainties in scc+shadowing • low pT maximum confirms • regeneration

  11. 3.2.2 J/y at LHC: v2 [He et al ’12] • further increase at mid-y

  12. 3.3 (1S) and (2S) at LHC Weak Binding Strong Binding (1S) → (2S) → [Grandchamp et al ’06, Emerick et al ‘11] • sensitive to color-screening + early evolution times • clear preference for strong binding (U potential) • similar results by [Strickland ‘12]

  13. 4.) Conclusions • Quarkonium discoveries in URHICs: • - increase of J/yRAASPS, RHIC → LHC • - low-pT enhancement • - sizable v2 • - increasing suppression of ’ (eB’~ eBJ/y) • Predicted signatures of QGP transport + hadronization • - controlled by quantitative description of RHIC+SPS data, lattice QCD • Implications • - T0 SPS(~230) < Tdiss(J/y,’) < T0RHIC (~350) < T0LHC(~550) ≤ Tdiss() • - confining force screened at RHIC+LHC • - marked recombination of diffusing charm quarks at LHC • Uncertainties • - input HF cross sections, HF thermalization • - initial-state effects (final-state in dAu, pPb?!)

  14. 2.) Thermodynamic T-Matrix in QGP • Lippmann-Schwinger equation In-Medium Q-QT-Matrix: - • potential Va real • imaginary parts: unitarization (cuts in in-med. QQ propagatorGQQ) • simultaneous treatment of: • - bound + scattering states • - quarkonia (QQ) + heavy-quark diffusion (Qq,g) - [Wong, Mannarelli+RR,Mocsy+Petreczky,Beraudo et al., Song et al.,Riek+RR,…]

  15. 2.2 Brueckner Theory of Heavy Quarks in QGP InputProcessOutputTest quark-no. susceptibility Q → Q 0-modes lattice data spectral fcts./ eucl. correlat. - 2-body potential QQ T-matrix - QQ evolution (rate equation) Qq T-matrix Quark selfenergy exp. data Q spectra + v2 (Langevin)

  16. q q 2.) Thermodynamic T-Matrix for Quarkonia in QGP • Lippmann-Schwinger equation In-Medium Q-QT-Matrix: - • potential Va strictly real • imaginary parts: unitarization (cuts in in-med. QQ propagatorGQQ) - • gluo-dissosciation (coupled channel) • [Bhanot+Peskin ‘85] • Landau damping (HQ selfenergy)

  17. 2.3 Free vs. Internal Energy in Lattice QCD F1(r,T) = U1(r,T) – T S1(r,T) Free Energy Internal Energy [Kaczmarek +Zantow ’05] - - • strong QQ potential,U = ‹Hint› • large mQ*~ mQ+ U1(∞,T)/2 • weak QQ potential • small mQ*~mQ+ F1(∞,T)/2 • F, U, Sthermodynamic quantities • Entropy: many-body effects

  18. 3.2.2 D-Meson Thermalization at LHC • to be determined…

  19. 3.3.3 J/y at LHC III: High-pt – ATLAS+CMS [Zhao+RR ‘11] • underestimate for peripheral • (spherical fireball reduces surface effects …)

  20. 3.3.4 Time Evolution of J/y at LHC Strong Binding (U) Weak Binding (F) • finite “cooking-time” window, determined by inelastic width [Zhao+RR ‘11]

  21. 3.4  at RHIC and LHC Weak Binding Strong Binding RHIC → LHC → [Grandchamp et al ’06, Emerick et al ‘11] • sensitive to color-screening + early evolution times

  22. 3.2 Charmonia in QGP: T-Matrix Approach • U-potential, • selfconsist. c-quark width • Spectral Functions • - J/y melting at ~1.5Tc • - cc melting at ~Tc • - Gc ~ 100MeV • Correlator Ratios • - rough agreement with • lQCD within uncertainties [Aarts et al ‘07] [Mocsy+ Petreczky ’05+’08, Wong ’06, Cabrera+RR ’06, Beraudo et al ’06, Satz et al ’08, Lee et al ’09, Riek+RR ’10, …]

  23. 3.2.2 T-matrix Approach with F-Potential • selfcons. c-quark width • Spectral Functions • - J/y melting at ~1.1Tc • - cc melting at ≤ Tc • - Gc ~ 50MeV • Correlator Ratios • - slightly worse agreement • with lQCD [Aarts et al ‘07] [Riek+RR ’10]

  24. 3.3 Charm-Quark Susceptibility in QGP → 2 → G→ 0 m « T [Riek+RR ‘10] • sensitive to in-medium charm-quark mass • finite-width effects can compensate in-medium mass increase

  25. 4.2.5.2 Thermalization Rate from T-Matrix gc [1/fm] • thermalization 4 (2) times faster using U (F) as potential than pert. QCD • momentum dependence essential (nonpert. effect ≠ K-factor!) [Riek+RR ‘10]

  26. _ 3.1.3 Momentum Dependence of Inelastic Width • dashed lines: gluo-dissociation • solid lines: quasifree dissociation • similar to full NLO calculation [Park et al ‘07] [Zhao+RR ‘07]

  27. 4.3 J/y at Forward Rapidity at RHIC [Zhao+ RR ‘10]

More Related