1 / 40

r Mesons in Medium at RHIC + JLab

r Mesons in Medium at RHIC + JLab. Ralf Rapp Cyclotron Institute + Dept. of Physics & Astronomy Texas A&M University College Station, USA Theory Center Seminar Jefferson Lab (Newport News, VA), 28.03.11. 1.) Introduction: QCD Hadron and Phase Structure. e + e - → hadrons.

kyna
Download Presentation

r Mesons in Medium at RHIC + JLab

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. r Mesons in Medium at RHIC + JLab Ralf Rapp Cyclotron Institute + Dept. of Physics & Astronomy Texas A&M University College Station, USA Theory Center Seminar Jefferson Lab (Newport News, VA), 28.03.11

  2. 1.) Introduction:QCD Hadron and Phase Structure e+e-→ hadrons • Electromagn. spectral function • - √s ≤ 1 GeV: non-perturbative • - √s ≥ 2 GeV: pertubative (“dual”) • Disappearance of resonances • ↔ phase structure changes: • - hadron gas → Quark-Gluon Plasma • - realization of transition? √s=M • Thermal e+e- emission rate from • hot/dense matter (lem >>Rnucleus ) • Temperature? Degrees of freedom? • Deconfinement? Chiral Restoration? Im Πem(M,q;mB,T)

  3. 1.2 Intro-II:Low-Mass Dileptons at CERN-SPS CERES/NA45 [2000] NA60 [2005] mee [GeV] • strong excess around M ≈ 0.5GeV (andM > 1GeV) • little excess in r/wandf region

  4. Outline 1.) Introduction 2.) Resonances + Chiral Symmetry  Spontaneous Chiral Symmetry Breaking + Chiral Partners 3.) r Meson in Medium  Hadronic Lagrangian + Empirical Constraints  Many-Body Theory + Spectral Functions 4.) Dilepton Spectra in Heavy-Ion Collisions  Thermal Emission Rates, Lattice QCD  Phenomenology in URHICs 5.) Dilepton Spectra in Nuclear Photo-Production  Elementary Amplitude, CLAS Phenomenology 6.) Conclusions

  5. 2.1 Chiral Symmetry Breaking + Hadron Spectrum Condensates fill QCD vacuum: Quark Level: Const. Mass Observables: Hadron Spectrum D(1700) N(1520) D(1232) “Data”: lattice [Bowman et al ‘02] Theory: Instanton Model [Diakonov+Petrov; Shuryak ‘85] M [GeV] JP=0±1± 1/2± 3/2± - • Mq* ~ ‹0|qq|0› • chiral breaking:|q2| ≤ 1 GeV 2 • energy gap • massless Goldstone mode • “chiral partners” split(½GeV)

  6. F2-Structure Function (spacelike) JLAB Data p d • x ≈ x • average → Quark-Hadron Duality • lower onset-Q2in nuclei? [Niculescu et al ’00] 2.2 Q2-Dependence of Chiral Breaking Axial-/Vector Mesons pQCD cont. • Weinberg Sum Rule(s) • spectral distributions!

  7. Outline 1.) Introduction 2.) Resonances + Chiral Symmetry  Spontaneous Chiral Symmetry Breaking + Chiral Partners 3.) r Meson in Medium  Hadronic Lagrangian + Empirical Constraints  Many-Body Theory + Spectral Functions 4.) Dilepton Spectra in Heavy-Ion Collisions  Thermal Emission Rates, Lattice QCD  Phenomenology in URHICs 5.) Dilepton Spectra in Nuclear Photo-Production  Elementary Amplitude, CLAS Phenomenology 6.) Conclusions

  8. 3.1 r-Meson in Vacuum and Hot/Dense Matter r Sp > Sp > Sp p p r • Vacuum: chiral p rLagrangian Srpp =+ • → P-wave pp phase shift, p el.-mag. formfactor • Hadronic Matter: effective Lagrangian for interactions with heat bath •  In-Medium r-Propagator r Dr (M,q;mB,T) = [M2 - mr2 -Srpp - Sr B -Sr M ]-1 Srpp = + • Pion Cloud [Chanfray et al, Herrmann et al, Urban et al, Weise et al, Oset et al, …] R=D, N(1520), a1, K1 ... r • r-Hadron Scattering SrB,M = [Haglin, Friman et al, RR et al, Post et al, …] h=N, p, K … • constrain effective vertices: R→ r h, scattering data (pN→rN, gN/A)

  9. > 3.2 Scattering Processes from r Spectral Function↔ Cuts (imag. parts) of Selfenergy Diagrams: resonance excitation N B r p g N → D → p N N-1 Sp p r meson-exchange scattering D p gN → p N, p D N-1 r meson-exchange current gNN →NN, ND

  10. gN gA p-ex 3.3 Constraints from Nuclear Photo-Absorption g-absorption cross section in-mediumrspectral function [Urban,Buballa, RR+Wambach ’98] Nucleon Nuclei • quantitative determination of interaction vertex parameters • melting of 2.+3. resonances

  11. 3.4 rSpectral Function in Nuclear Matter rN→B* resonances (low-density approx.) In-med. p-cloud + rN→B* resonances In-med p-cloud + rN → N(1520) [Urban et al ’98] [Post et al ’02] [Cabrera et al ’02] rN=0.5r0 rN=r0 rN=r0 p N →r NPWA Constraints:g N ,g A • strong broadening + small upward mass-shift • empirical constraints important quantitatively

  12. rB /r0 0 0.1 0.7 2.6 3.5 r Spectral Function in Heavy-Ion Collisions Hot+Dense Matter Hot Meson Gas [RR+Gale ’99] [RR+Wambach ’99] • r-meson “melts” in hot /dense matter • medium effects dominated by baryons

  13. Outline 1.) Introduction 2.) Resonances + Chiral Symmetry  Spontaneous Chiral Symmetry Breaking + Chiral Partners 3.) r Meson in Medium  Hadronic Lagrangian + Empirical Constraints  Many-Body Theory + Spectral Functions 4.) Dilepton Spectra in Heavy-Ion Collisions  Thermal Emission Rates, Lattice QCD  Phenomenology in URHICs 5.) Dilepton Spectra in Nuclear Photo-Production  Elementary Amplitude, CLAS Phenomenology 6.) Conclusions

  14. e+ e- r • Sources of Dilepton Emission: • “primordial” (Drell-Yan) qq annihilation: NN→e+e-X - • emission from equilibrated matter (thermal radiation) • - Quark-Gluon Plasma: qq → e+e- , … • - Hot+Dense Hadron Gas: p+p- → e+e- , … - _ • final-state hadron decays: p0,h → ge+e- , D D → e+e-X, … 4.1 Strong-Interaction Matter in the Laboratory Au + Au NN-coll. Hadron Gas “Freeze-Out” QGP

  15. M ≤ 1 GeV: non-perturbative M > 1.5 GeV: perturbative ImPem~ Nc∑(eq)2 ImPem~ [ImDr + ImDw /10 + ImDf /5] 4.2 Thermal Dilepton Emission e+ e- g* Rate: Im Πem(M,q;mB,T) see→had / see→mm~ ImPem(M) / M2 - e+ e- p p q q e+ e- r √s=M “Hadronic Spectrometer” (T ≤ Tc) “QGP Thermometer” (T > Tc)

  16. F2-Structure Function JLAB Data p d  4.2.2 Dilepton Rates: Hadronic vs. QGP dRee /dM2 ~ ∫d3q f B(q0;T) Im Pem • Hadronic and QGP rates tend to • “degenerate” toward~Tc • Quark-Hadron Duality at all M?! • ( degenerate axialvector SF!) - [qq→ee] [HTL] [RR,Wambach et al ’99]

  17. 4.3 Lattice-QCD Dilepton Rate [Kaczmarek et al ’10] dRee/d4q 1.4Tc (quenched) q=0 • low-mass enhancement in lattice rate! • similar to hard-thermal-loop resummed perturbation theory [Braaten,Pisarski+Yuan ‘90]

  18. 4.3.2 Euclidean Correlators: Lattice vs. Hadronic • Euclidean Correlation fct. Hadronic Many-Body vs. Lat. [’02] Lattice [Kaczmarek et al ‘10] • “Duality” of lattice (1.4 Tc) and hadronic many-body (“Tc”) rates?!

  19. 4.3.3 Back to Spectral Function -Im Pem /(C T q0) • corroborates approach to chiral restoration !?

  20. 4.4 Dileptons in Heavy-Ion Collisions • Evolve rates over fireball expansion: m+m-Spectra at CERN-SPS In-In(158AGeV) [NA60 ‘09] Thermal m+m- Emission Rate Mmm [GeV] • invariant-mass spectrum directly • reflects thermal emission rate: • - M<1GeV: r broadening • - M>1GeV: Tslope ~ 160-180 MeV [van Hees +RR ’08]

  21. approach seems to fail at RHIC 4.4.2 Conclusions from Dilepton “Excess” Spectra • thermal source (T~120-200MeV) • M<1GeV: in-medium r meson • - no significant mass shift • - avg. Gr(T~150MeV)~350-400MeV • Gr (T~Tc) ≈ 600 MeV → mr • - driven by baryons • M>1GeV: radiation around Tc • fireball lifetime “measurement”: • tFB ~ (6.5±1) fm/c (semicentralIn-In) [van Hees+RR ‘06, Dusling et al ’06, Ruppert et al ’07, Bratkovskaya et al ‘08] Mmm [GeV]

  22. Outline 1.) Introduction 2.) Resonances + Chiral Symmetry  Spontaneous Chiral Symmetry Breaking + Chiral Partners 3.) r Meson in Medium  Hadronic Lagrangian + Empirical Constraints  Many-Body Theory + Spectral Functions 4.) Dilepton Spectra in Heavy-Ion Collisions  Thermal Emission Rates, Lattice QCD  Phenomenology in URHICs 5.) Dilepton Spectra in Nuclear Photo-Production  Elementary Amplitude, CLAS Phenomenology 6.) Conclusions

  23. 5.1 Nuclear Photoproduction: rMeson in Cold Matter e+ e- g + A → e+e- X g r Eg ≈ 1.5-3 GeV [CLAS+GiBUU ‘08] • extracted “in-medium” r-width Gr≈ 220 MeV - small?!

  24. 5.2 Equilibrium Approach (a) Production Amplitude: t-channel [Oh+Lee ‘04] + resonances (r spectr. fct.!) gd→e+e- X r g + CLAS N gN→ rN [Riek et al ’08, ‘10] (b) Medium Effects: r propagator in cold nuclear matter - broadening much reduced with increasing 3-momentum Im Dr [1/MeV2] M[GeV]

  25. 5.2.2 Application to CLAS Data Eg ≈1.5-3 GeV,uniform production points, decay distribution with in-med Gr Density at rDecay Point • average qr ~ 2GeV  average rN(Fe) ~ 0.4r0 • free norm:c2 =1.08 vs.1.55 in-med vs. vac rspectral function • need low momentum cut + absolute cross section!

  26. 5.3 Predictions for r Photoproduction 3-Momentum Cuts Transparency Ratio • low-momentum yield small, • but spectral broadening strong

  27. p Sp Sp Sp r Sr Sr Sr X.) Axialvector in Medium: Dynamical a1(1260) p a1 resonance + + . . . = Vacuum: r In Medium: + + . . . • in-medium p + r propagators • broadening of p-r scattering • amplitude [Cabrera et al. ’10]

  28. 6.) Conclusions • EM spectral function ↔ excitations of QCD vacuum • - ideal tool to probe hot/dense matter • Effective hadronic Lagrangian + many-body theory: • - strong r broadening in (baryonic) medium, • suppresed at large momentum (CLAS!) • Dileptons in heavy-ion collisions: • - spectro- /thermo-meter (CERES, NA50,NA60) • - r melting at “Tc” = 160-190 MeV • → quark-hadron duality?! hadron liquid?! • Sum rules + axialvector spectral function to tighten • relations to (partial) chiral restoration • Future experiments at RHIC-2, FAIR +LHC; JLAB?!

  29. 4.2.4 Intermediate-Mass Dileptons: Thermometer • QGP or Hadron Gas (HG) radition? • vary critical temperature Tc in fireball evolution - qq→m+m- pppp→m+m- (e.g. pa1→ m+m-) green: Tc=190MeV red: Tc=175MeV (default) blue: Tc=160MeV • partition QGP vs. HG depends on Tc • (spectral shape robust: dilepton rate “dual” around Tc! ) • Initial temperature Ti ~ 190-220 MeV at CERN-SPS

  30. 4.4 Sum Rules and Order Parameters • QCD-SRs [Hatsuda+Lee ’91, Asakawa+Ko ’92, Klingl et al ’97, Leupold et al ’98, Kämpfer et al ‘03, Ruppert et al ’05] • Weinberg-SRs: momentsVector-Axialvector [Weinberg ’67, Das et al ’67, Kapusta+Shuryak ‘93]  Promising synergy of lQCD and effective models

  31. 3.2.5 EM Probes in Central Pb-Au/Pb at SPS Di-Electrons [CERES/NA45] Photons [WA98] [Turbide et al ’03, van Hees+RR ‘07] • consistency of virtual+real photons (same Pem) • very low-mass di-electrons ↔ (low-energy) photons [Srivastava et al ’05, Liu+RR ‘06]

  32. 3.5.2 Rho, Omega + Phi Freezeout from pt-Spectra r • r freezeout = fireball freezeout • adjust w and f freezeout • contribution to fit pt-spectra • sequential freezeout f → w → r • consistent with mass spectra

  33. 3.5.3 Composition of Mass Spectra in qt-Bins low qt intermed. qt high qt • high qt ≥ 1.5GeV: • - medium effects reduced • - non-thermal sources take over

  34. check fireball evolution to fit slopes • of excess radiation (▼) • (thermal radiation softer by Lorentz-1/g) • increase a┴ = 0.085/fm → 0.1/fm • (viscous effects, larger grads. in In-In …) 3.5 Dimuon pt-Spectra and Slopes

  35. pions: Tch=160MeV a┴ =0.1/fm pions: Tch=175MeV a┴ =0.085/fm 5.2.5 NA60 Dimuons: pt-Slopes • in-medium radiation “harder” than • hadrons at freezeout?! • (thermal radiation softer by Lorentz-1/g) • smaller Tch helps (largerTfo) • non-thermal sources (DY, …)? • additional transverse acceleration? • hadron spectra (pions)? Tch=160MeV a┴ =0.1/fm Tch=175MeV Tch=160MeV a┴ =0.085/fm Tch=160MeV

  36. pS pS pS pS pS pP pP 2.2 Chiral + Resonance Scheme p s N+ N(1535)- r a1D+ N(1520)- N(1900)+ D(1700)-(?) D(1920)+ rS (a1)S rS • add S-wave pion → chiral partner • P-wave pion → quark spin-flip • importance of baryon spectroscopy

  37. |Fp|2 dpp 3.1 Axial/Vector Mesons in Vacuum Introduce r, a1 as gauge bosons into free p +r +a1Lagrangian p p r r-propagator: pEM formfactor ppscattering phase shift

  38. f.o.+prim. p 3.3 “Non-Thermal Dilepton Sources • → relevant at M,qt ≥ 1.5 GeV (?) • primordial qq annihilation (Drell-Yan): NN → e+e- X • r mesons at thermal freeze-out (“blast-wave”): • - extra Lorentz-g factor relative to thermal radiation • - qt-spectra + yield fixed by fireball model • primordial (“hard”) r mesons: • - schematic jet-quenching • with sabs fit to pions - • late decays: p0,h → ge+e- , • DD → e+e-X, J/y→e+e- , … _

  39. 2.2 Electric Conductivity • pion gas (chiral pert. theory) • sem / T ~ 0.01 for T ~ 150-200 MeV [Fernandez-Fraile+Gomez-Nicola ’07] • quenched lattice QCD • sem / T ~ 0.35 for T = (1.5-3) Tc [Gupta ’04] • soft-photon limit

  40. 3.2.3 NA60 Excess Spectra vs. Theory [CERN Courier Nov. 2009] • Thermal source does very well • Low-mass enhancement very sensitive to medium effects • Intermediate-mass: total agrees, decomposition varies

More Related