1 / 22

Comprehensive Analysis of In-Medium Quarkonia at SPS, RHIC + LHC

Comprehensive Analysis of In-Medium Quarkonia at SPS, RHIC + LHC. Ralf Rapp Cyclotron Institute + Dept. of Physics & Astronomy Texas A&M University College Station, TX USA With: X. Zhao, A. Emerick Quark Matter 2012 Conference Washington (DC), 12.-18.08.12.

kura
Download Presentation

Comprehensive Analysis of In-Medium Quarkonia at SPS, RHIC + LHC

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Comprehensive Analysis ofIn-Medium Quarkonia at SPS, RHIC+LHC Ralf Rapp Cyclotron Institute + Dept. of Physics & Astronomy Texas A&M University College Station, TX USA With: X. Zhao, A. Emerick Quark Matter 2012 Conference Washington (DC), 12.-18.08.12

  2. 1.) Introduction: A “Calibrated” QCD Force V [½GeV] [Kaczmarek et al ‘03] r [½ fm] • Vacuum charm- + bottomonium spectroscopy well described • Non-perturbative force (EBCoul(J/y) ~ 0.05 GeVvs. 0.6 GeVexpt.) • Persists in medium to at least ~2Tc • Potential approach in medium?

  3. q q 2.) Thermodynamic T-Matrix for Quarkonia in QGP • Lippmann-Schwinger equation [Mannarelli,Cabrera,Riek+RR ‘05,‘06,‘10] In-Medium Q-QT-Matrix: - • potential Va strictly real • imaginary parts: unitarization (cuts in in-med. QQ propagatorGQQ) - • gluo-dissosciation (coupled channel) • [Bhanot+Peskin ‘85] • Landau damping (HQ selfenergy)

  4. 2.2 Brueckner Theory of Heavy Quarks in QGP InputProcessOutputTest quark-no. susceptibility Q → Q 0-modes lattice data spectral fcts./ eucl. correlat. - 2-body potential QQ T-matrix - QQ evolution (rate equation) Qq T-matrix Quark selfenergy exp. data Q spectra + v2 (Langevin)

  5. D - D J/y reaction rate equilibrium limit (y -width) - c c J/y 3.) Transport Approach to Quarkonium Evolution [PBM et al ’01, Gorenstein et al ’02,Thews et al ’01, Grandchamp+RR ’01, Ko et al ’02, Cassing et al ’03, Zhuang et al ’05, …] • Regeneration in QGP + HG: • detailed balance: → - ← J/y + g c + c + X • Rate • Equation: • Input from T-Matrix (weak/strong binding) Gy eBy mc*

  6. 3.1 Inputs + Parameters • Input • - J/y,cc,y’, bb +cc production cross sections [p-p] • - “Cold Nuclear Matter” effects (shadowing, nucl. abs., Cronin) [p/d-A] • - Medium evolution: thermal fireball • [A-A,hydrodynamics] - - • Parameters • - strong coupling ascontrols Gdiss • - incomplete c-quark equilibration: • Nyeq (t) ~ Nytherm(t) · [1-exp(-t/tceq)] q q

  7. 3.2 Inclusive J/y at SPS + RHIC Strong Binding (U) Weak Binding (F) [Zhao+RR ‘10] • as~0.3, charm relax. tceq = 6(3) fm/c for U(F) vs. ~5(10) from T-matrix • different composition in two scenarios

  8. 3.2.2 J/y pT Spectra + Elliptic Flow at RHIC (U potential) • shallow minimum at low pT • high pT: • formation time, b feeddown, Cronin • small v2limits regeneration, • but does not exclude it [Zhao+RR ‘08]

  9. 3.3 J/y at LHC: Centrality Mid-Rapidity Forward Rapidity • regeneration increases, still net suppression • uncertainty from “shadowing” • good consistency of transport approaches [Zhao+RR ‘11]

  10. 3.3.2 J/y at LHC: pT-Spectra + v2 • maximum at low pT confirms • expected regeneration level • room for additional regeneration • with harder pT spectra… • b-feeddown prevalent at high pT

  11. 3.4 (1S) and (2S) at LHC Weak Binding Strong Binding (1S) → (2S) → • sensitive to color-screening + early evolution times • clear preference for strong binding (U potential) [Grandchamp et al ’06, Emerick et al ‘11]

  12. 4.) Conclusions • Thermodynamic T-matrix approach • →quarkonium spectral fcts. + HQ transport in QGP, • benchmarks: lattice QCD, vacuum spectroscopy, pQCD • Kinetic rate equation with in-medium quarkonia • → dissociation + formation in QGP / hadronization • inputs: HQ cross-secs., cold-nuclear-matter effects,… • “Weak-binding” scenario disfavored • - inconsistent with: HF transport, (1S) suppression, … • Manifestations of J/y regeneration • - RAASPS(Ti~220) ~ RAARHIC(Ti~350) < RAALHC(Ti~550) ~ 0.5 • - low-pTenhancement of RAALHC, finite v2

  13. 3.3.3 J/y at LHC III: High-pt – ATLAS+CMS [Zhao+RR ‘11] • underestimate for peripheral (expected from RHIC) • (spherical fireball reduces surface effects …)

  14. 3.3.4 Time Evolution of J/y at LHC Strong Binding (U) Weak Binding (F) • finite “cooking-time” window, determined by inelastic width [Zhao+RR ‘11]

  15. 3.4  at RHIC and LHC Weak Binding Strong Binding RHIC → LHC → [Grandchamp et al ’06, Emerick et al ‘11] • sensitive to color-screening + early evolution times

  16. 3.2 Charmonia in QGP: T-Matrix Approach • U-potential, • selfconsist. c-quark width • Spectral Functions • - J/y melting at ~1.5Tc • - cc melting at ~Tc • - Gc ~ 100MeV • Correlator Ratios • - rough agreement with • lQCD within uncertainties [Aarts et al ‘07] [Mocsy+ Petreczky ’05+’08, Wong ’06, Cabrera+RR ’06, Beraudo et al ’06, Satz et al ’08, Lee et al ’09, Riek+RR ’10, …]

  17. 3.2.2 T-matrix Approach with F-Potential • selfcons. c-quark width • Spectral Functions • - J/y melting at ~1.1Tc • - cc melting at ≤ Tc • - Gc ~ 50MeV • Correlator Ratios • - slightly worse agreement • with lQCD [Aarts et al ‘07] [Riek+RR ’10]

  18. 3.3 Charm-Quark Susceptibility in QGP → 2 → G→ 0 m « T [Riek+RR ‘10] • sensitive to in-medium charm-quark mass • finite-width effects can compensate in-medium mass increase

  19. 4.2.5.2 Thermalization Rate from T-Matrix gc [1/fm] • thermalization 4 (2) times faster using U (F) as potential than pert. QCD • momentum dependence essential (nonpert. effect ≠ K-factor!) [Riek+RR ‘10]

  20. 4.5 Summary of Charm Diffusion in Matter Hadronic Matter vs. QGP vs. Lattice QCD (quenched) [He et al ’11, Riek+RR ’10, Ding et al ‘11, Gavai et al ‘11] AdS/CFT • Shallow minimun around Tc ?! • Quark-Hadron Continuity?! • 20% reduction by non-perturbative HQ-gluon scattering

  21. _ 3.1.3 Momentum Dependence of Inelastic Width • dashed lines: gluo-dissociation • solid lines: quasifree dissociation • similar to full NLO calculation [Park et al ‘07] [Zhao+RR ‘07]

  22. 4.3 J/y at Forward Rapidity at RHIC [Zhao+ RR ‘10]

More Related