1 / 25

Quarkonia in Medium and their Fate at Future RHIC

Quarkonia in Medium and their Fate at Future RHIC. Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA Workshop on “Future Perspectives in QCD at High Energy” Brookhaven National Laboratory, 19.07.06. Experiment:

nolen
Download Presentation

Quarkonia in Medium and their Fate at Future RHIC

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Quarkonia in Medium and their Fate at Future RHIC Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA Workshop on “Future Perspectives in QCD at High Energy” Brookhaven National Laboratory, 19.07.06

  2. Experiment: • no direct access (?) to spectral shape (unliker → e+e-): • J/y decay outside medium with1:200(r: 5:1) • number ofJ/y, Y’, Y, …and their pT-spectra, v2(pT) Challenges:- in-Medium -spectral functions - infer confinement of QGP! order parameter?! 1.) Introduction:Quarkonia Probing the QGP • immerse -pair into the QGP •  Vacuum properties change: • color screening (reduced binding) • dissociation reactions (and reverse!) • heavy-quark mass (→ mass and decay rates, threshold)

  3. Outline 1.) Introduction 2.) Medium Effects on Quarkonia 2.1 Color Screening 2.2 Dissociation Reactions 2.3 Heavy-Quark Masses in QGP 2.4 Spectral Functions and Correlators ↔ Lattice QCD 3.) Phenomenology in URHICs 3.1 Suppression and Regeneration 3.2The Role of Open Charm 3.3Observables 4.)Summary and Outlook

  4. 2.1 Onia in QGP: Color Screening and Binding • solve Schrödinger-Eq. with lattice-QCD U1(r) as potential [Shuryak etal ’04, Wong ’04, Alberico etal ’05, Mocsy etal ‘05, …] Charmonium Bottomonium • small binding energies aboveTc (~ screened Cornell pot.) • even smaller(!) for V1 = (1-a) U1 + a F1 [Wong ’06]

  5. (ii) “Quasifree” • Dissociation • neglects bound-state structure • appropriate for small binding • also involves (anti-) quarks [Grandchamp+RR ‘01] _ Dissociation Times 2.2.1 Charmonia in QGP: Dissociation Reactions • (i)Gluo- • Dissociation • sdiss(w)peaked atw ≈1.4eB • ok for free J/y (eBvac=640MeV) • not for screening, y’, cc [Bhanot+Peskin ‘84] Cross Sections

  6. 2.2.2 Bottomonium Lifetimes in QGP “Quasifree” Suppression Bottomonium Screening ~Tc [Karsch,Mehr +Satz ‘88] m~ gT [GeV] [Grandchamp etal ’05] • appreciable sensitivity to color screening! • significance at RHIC: tY ≈ 50 →5 fm/c

  7. 2.3 Heavy-Quark Masses in the QGP • quarkonium mass:my= 2mc* - eB • asymptotic energiesF∞ = U∞ - TS∞ U∞ [Kaczmarek +Zantow ‘05] F∞ • in-/decreasing heavy-quark mass ?! • close toTc: entropy contribution?

  8. - real part (pole ) ↔ screening, in-medium quark-mass - imaginary part (width) ↔ dissociation e.g. GY= ‹ npsdissvrel › ≈ 10fm-3 1mb ½ ≈ 100MeV (T≈250MeV) for tQGP=2fm/c: SY= exp[-GYtQGP] ≈ 0.37  “stable” J/y at RHIC unlikely • In-Medium Continuum: • Ethr(T) , nonperturbative Q-Q rescattering _ 2.4 Spectral Functions and Euclidean Correlators J/y s/w2 • Vacuum Spectral Function • ~ Bound State + Continuum: • sy(w) = Fy2 d(w-my) + w2Q(w-Ethr) fythr • In-Medium Bound-State / Resonance • sy (w) ~ Im Dy (w) : Y’ cont. w

  9. hc cc [Datta etal ‘04] • S-wave charmonia little changed to ~2Tc, P-wave signal enhanced(!) 2.4.2 Euclidean Correlation Functions (orR=G/Grecon) • accurate “data” from lattice QCD, integral over spectral function

  10. compatible with lattice • increase due to reduced Ethr(T)! • opposite trend as on lattice 2.4.3 Euclidean Correlator -- Potential Model • Spectral Function:sy(w,T) = Fy2 d(w-my) + w 2Q(w-Ethr) fythr • - Bound State: Schrödinger eq. with screened Cornell, or lQCD U1 • - Continuum: pQCD with Ethr(T) = 2mc+V∞ [Mocsy+Petreczky ‘05]

  11. - Q-QT-Matrix: • comprehensive treatment of • bound and scattering states • nonperturbative threshold • effects large • finite-width effects [Cabrera+RR in prep] 2.4.4 Eucl. Correlator -- Model II: T-Matrix Approach • use potential to solve • Lippmann-Schwinger-Eq. • for [Mannarelli+RR ’05, Cabrera+RR in prep] Correlator:

  12. cc [Datta etal ’04] • trends roughly as on lattice, except magn. + T-dep. of cc; threshold?! 2.4.4 Eucl. Correlators from T-Matrix Approach [Cabrera+RR in prep] • lattice U1-potential, mc=1.7GeV fix, Grecon(Ethr=2mD) hc

  13. 2.4.4 Eucl. Correlators from T-Matrix Approach [Cabrera+RR in prep] • lattice U1-potential, mc=1.7GeV fix, Grecon= G(T=1.1Tc) hc • sensitive to Grecon ! • ~ insensitive to width effects!

  14. 3.) Phenomenology in URHICs 3.1 Suppression + Regeneration 3.2 The Role of Open Charm 3.3 Observables

  15. - → ← J/y + g c + c + X key ingredients: reaction rate equilibrium limit (y -width) (links to lattice QCD) 3.1 Suppression and Regeneration in URHICs • 3-Stage Dissociation:nuclear (pre-eq) -- QGP -- HG • Stot = exp[-snucrL] exp[-GQGPtQGP ] exp[-GHGtHG ] • Regeneration in QGP + HG: • - microscopically: backward reaction (detailed balance!) - snuc(SPS) ≈ 4.5mb → used for RHIC predictions; - but: RHIC d-Au data → snuc≈1.5mb [PBM etal ’01, Gorenstein etal ’02,Thews etal ’01, Grandchamp+RR ’01, Ko etal ’02, Cassing etal ‘03] - for thermal c-quarks and gluons:

  16. e± Spectra J/y Coalescence at Tc [Greco etal ‘05] • yields differ • by factor 3 • importance • of Cronin • [Thews+ • Mangano’05] pQCD scatt. nonpert. scatt. [van Hees etal ‘05] [Ko etal ’02, Cassing etal ‘03 Gossiaux etal ’06, Zhang ’06, …] • need more detailed studies! (e.g. transport, Langevin) 3.2 The Role of Open Charm and Regeneration • softer c-quarks → more Y formation ↔ c-quark diffusion: tceq = mcT/D

  17. Update and Further Studies • snuc=1.5mb • sensitive to:c-quark diff., Tdiss • shape of RAAa problem?! • precise data! [X.Zhao+RR in prep] 3.3.1 Observables I: Centrality Dependence at RHIC → solve rate equation for expanding fireball (QGP-mix-hadron gas) Original Predictions [PHENIX ‘05] • snuc=4.4mb, tceq ~ 2.5fm/c (schem.) • QGP-regeneration dominant • sensitive to: mc* , (Ncc )2 [Grandchamp etal ’03]

  18. 3.3.2 Observables II: Excitation Function + Rapidity J/ySuppression vs. Regeneration SequentialY’+cc Suppression [Grandchamp +RR ’01] [Karsch,Kharzeev+Satz ‘06] • direct J/yessentially survive • (even at RHIC) • nontrivial “flat” dependence • similar interplay in rapidity!? • (need accurate dNc/dy)

  19. 3.3.3 Bottomonium at RHIC and LHC RHIC LHC • 50% feeddown from Y’, cb • importance of color-screening! • bottomonium suppression as unique QGP signature ?! [Grandchamp etal ’05]

  20. 5.) Summary • strong color-screening from lQCD heavy-quark potentials • short quarkonium lifetimes (tX=1-5 fm/c) • open-charm masses: open problem • Euclidean Correlation Functions: • - quantitative constraints on model spectral functions • - importance of nonperturbative threshold effects (T-matrix!) • - moderate sensitivity to width effects • Heavy-Ion Collisions: • - J/y above Tc : gain term! sensitive to c-quark diffusion, Tdiss • - flat excitation fct.: suppr. vs regeneration or (Y’, cc) only? • elliptic flow: v2(J/y) up to ~10% ?! • - Y suppression (very) sensitive to screening • - sQGP signature: Y more suppressed than J/y at RHIC+LHC !

  21. 2.4.4 Eucl. Correlators from T-Matrix Approach • lattice U1-potential, mc=1.8GeV fix, Grecon(Ethr=2mD) [Cabrera+RR in prep] hc cc • trends roughly agree with lattice, except T-dep. of cc – threshold?!

  22. Satz, Digal, Fortunato Rapp, Grandchamp, Brown Capella, Ferreiro • Percolation • Plasma • Comovers NA60 preliminary 3.5 Charmonium Observables at SPS Pb(158AGeV)-PbIn(158AGeV) –In • QGP-suppression prevalent • “jumps” / ”plateaus” in centrality? [Grandchamp etal ’03]

  23. 2.1 Onia in QGP: Color Screening and Binding Energies e.g. screened Cornell potential (linear+confining) [Karsch,Mehr+Satz ’88, Wong ’04, …] Charmonium Bottomonium ~Tc ~Tc m~ gT [GeV] m~ gT [GeV] • binding energies much reduced aboveTc • similar for lattice U1(r) , smaller(!) for F1

  24. 2.4.1 Langevin-Simul. at RHIC: Heavy-Quark RAA Resonances vs. pQCD Charm-pQCD (as,mD=1.5T) as , g 1 , 3.5 0.5 , 2.5 0.25,1.8 • hydro with Tc=165MeV, t ≈ 9fm/c • as and Debye mass independent • expanding fireball ≈ hydro • pQCD elastic scatt. moderate • resonance effects substantial [Moore and Teaney ’04] [van Hees,Greco+RR ’05]

  25. 3.4.3 Scrutinizing Charmonium Regeneration II: J/y Elliptic Flow Suppression only Thermal Coalescence at Tc [Greco etal ’04] [Wang+Yuan ’02] MB Au-Au • factor ~5 different! • transition inpt!?

More Related