1 / 11

Bellringer

Bellringer. On piece of paper… Put your name Graph the system 2x – 2y = 4 y – x = 6 State whether the solution is Independent, Dependent, or Inconsistent. 3-2 Solving Systems Algebraically.

blithe
Download Presentation

Bellringer

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Bellringer On piece of paper… • Put your name • Graph the system 2x – 2y = 4 y – x = 6 • State whether the solution is Independent, Dependent, or Inconsistent

  2. 3-2 Solving Systems Algebraically M11.D.2.1.4: Write and/or solve systems of equations using graphing, substitution, and/or elimination

  3. Objectives Solving Systems by Substitution Solving Systems by Elimination

  4. x + 3y = 12 –2x + 4y = 9 Solving Systems by Substitution Solve the system by substitution. Step 1:  Solve for one of the variables. Solving the first equation for x is the easiest. x + 3y = 12 x = –3y + 12 Step 2:  Substitute the expression for x into the other equation. Solve for y. –2x + 4y = 9 –2(–3y + 12) + 4y = 9 Substitute for x. 6y – 24 + 4y = 9 Distributive Property 6y + 4y = 33 y = 3.3 Step 3:  Substitute the value of y into either equation. Solve for x. x = –3(3.3) + 12 x = 2.1 The solution is (2.1, 3.3).

  5. 2 p + s = 10.25 4 p + s = 18.75 Relate:  2 • price of a slice of pizza + price of a soda = $10.25 4 • price of a slice of pizza + price of a soda = $18.75 Define:  Let p = the price of a slice of pizza.     Let s = the price of a soda. Write: Real World Example At Renaldi’s Pizza, a soda and two slices of the pizza–of–the–day costs $10.25. A soda and four slices of the pizza–of–the–day costs $18.75. Find the cost of each item. 2p + s = 10.25 Solve for one of the variables. s = 10.25 – 2p

  6. Continued (continued) 4p + (10.25 – 2p) = 18.75 Substitute the expression for s into the other equation. Solve for p. p = 4.25 2(4.25) + s = 10.25 Substitute the value of p into one of the equations. Solve for s. s = 1.75 The price of a slice of pizza is $4.25, and the price of a soda is $1.75.

  7. 3x + y = –9 –3x – 2y = 12 3x + y = –9 –3x – 2y = 12 Two terms are additive inverses, so add. –y = 3 Solve for y. Solving by Elimination Use the elimination method to solve the system. y = –3 3x + y = –9 Choose one of the original equations. 3x + (–3) = –9 Substitute y.Solve for x. x = –2 The solution is (–2, –3).

  8. 2m + 4n = –4 3m + 5n = –3 2m + 4n = –4 10m + 20n = –20 1 3m + 5n = –3–12m–20n = 12 2 –2m = –8 Add. Multiply by 5. 1 2 Multiply by –4. Solving an Equivalent System Solve the system by elimination. To eliminate the n terms, make them additive inverses by multiplying. m = 4 Solve for m. 2m + 4n = –4 Choose one of the original equations. 2(4) + 4n = –4 Substitute for m. 8 + 4n = –4 4n = –12 Solve for n. n = –3 The solution is (4, –3).

  9. –3x + 5y = 6 6x – 10y = 0 –6x + 10y = 12 6x – 10y = 0 Multiply the first line by 2 to make the x terms additive inverses. 0 = 12 Solving a System Without a Unique Solution Solve each system by elimination. a. –3x + 5y = 6 6x – 10y = 0 Elimination gives an equation that is always false. The two equations in the system represent parallel lines. The system has no solution.

  10. –3x + 5y = 6 6x – 10y = –12 –6x + 10y = 12 6x + 10y = –12 Multiply the first line by 2 to make the x terms additive inverses. 0 = 0 {(x, y)| y = x + } 3 5 6 5 Continued (continued) b. –3x + 5y = 6 6x – 10y = –12 Elimination gives an equation that is always true. The two equations in the system represent the same line. The system has an infinite number of solutions:

  11. Homework Pg 128 & 129 # 1,2,18,19,30,31

More Related