350 likes | 572 Views
1/30. V. Blackmore: MICE & nuSTORM. 13/09/14. &. MICE & nuSTORM. V. Blackmore University of Oxford v.blackmore1@physics.ox.ac.uk Neutrino Oscillation Workshop September 13 th , 2014. 2/30. V. Blackmore: MICE & nuSTORM. 13/09/14. Talk Overview. Motivation Why do we need cooling?
E N D
1/30 V. Blackmore: MICE & nuSTORM 13/09/14 & MICE & nuSTORM V. Blackmore University of Oxford v.blackmore1@physics.ox.ac.uk Neutrino Oscillation Workshop September 13th, 2014
2/30 V. Blackmore: MICE & nuSTORM 13/09/14 Talk Overview • Motivation • Why do we need cooling? • The anatomy of MICE • Progress towards Steps IV and V* • Muon beams for the busy physicist • nuSTORM • -nucleon scattering cross-sections • Sterile searches • Contributions to future facilities *comments later
3/30 V. Blackmore: MICE & nuSTORM 13/09/14 A Machine for CPV Discovery [2] P. Coloma, P. Huber, J. Kopp & W. Winter, 2012 [1] CKMfitter Collaboration, 2014
4/30 V. Blackmore: MICE & nuSTORM 13/09/14 Neutrino Factory Front End Muon Source Acceleration Decay Ring Cartoon based on IDS-NF design 2.8—10 GeV 0.8—2.8 GeV Proton driver (linac option) Phase Rotation Decay Channel to 0.8 GeV Buncher Cooling Target Muon decay ring 562 m Source Oscillation Detection CC CC CC CC Also available to use as a ‘superbeam’
5/30 V. Blackmore: MICE & nuSTORM 13/09/14 Muon Cooling Area emittance, Accelerator only accepts in this area • Reduce by defying Lioville’s theorem, • Requires a non-conservative force • Muon lifetime limits options • Ionisation cooling is the solution Liouville’s theorem conserves phase space
6/30 V. Blackmore: MICE & nuSTORM 13/09/14 Sustainable Ionisation Cooling Ionisation Cooling Multiple scattering Measure a change in emittance
7/30 V. Blackmore: MICE & nuSTORM 13/09/14 Muon Ionisation Cooling Experiment MICE • Goal: Demonstration of sustainable ionisation cooling (Step V) • Progress: Measurements of material properties and their influence on cooling (Step IV)
beam and PID upstream 8/30 MICE Step V • Measure beam in Upstream Spectrometer Solenoid • 4T solenoid field • 5 SciFi tracker planes • Determine 1600 4 1400 2 (mm) (T) 0 800 -2 400 -4 204 6.0 200 5.8 (mm) (MeV/) 5.6 196 192 5.4 -4000 -2000 0 2000 4000 (mm)
beam and PID upstream 9/30 MICE Step V • 2. Reduce momentum vector in 1st absorber (LH2 or LiH). • Maximal reduction at small • Reduces 1600 4 1400 2 (mm) (T) 0 800 -2 400 -4 204 6.0 200 5.8 (mm) (MeV/) 5.6 196 192 5.4 -4000 -2000 0 2000 4000 (mm)
beam and PID upstream 10/30 MICE Step V • 3. Restore longitudinal momentum in RF cavities • remains constant • Sustainable cooling 1600 4 1400 2 (mm) (T) 0 800 -2 400 -4 204 6.0 200 5.8 (mm) (MeV/) 5.6 196 192 5.4 -4000 -2000 0 2000 4000 (mm)
beam and PID upstream 11/30 MICE Step V • 4. Reduce momentum vector in 2nd absorber (LH2 or LiH). • Maximal reduction at small • Reduces 1600 4 1400 2 (mm) (T) 0 800 -2 400 -4 204 6.0 200 5.8 (mm) (MeV/) 5.6 196 192 5.4 -4000 -2000 0 2000 4000 (mm)
beam and PID upstream 12/30 MICE Step V • Measure beam in Downstream Spectrometer Solenoid • 4T solenoid field • 5 SciFi tracker planes • Determine final 1600 4 1400 2 (mm) (T) 0 800 -2 400 -4 204 6.0 200 5.8 (mm) (MeV/) 5.6 196 192 5.4 -4000 -2000 0 2000 4000 (mm)
13/30 V. Blackmore: MICE & nuSTORM 13/09/14 Progress: Step IV Measurements of material properties and their influence on cooling • Characterise input beam [3] • Understand effect of material on beam emittance • No RF, 1 absorber module • Understand sustainable ionisation cooling • With RF, 2 absorber modules 2015 2017 Entering final stages of construction, data-taking to begin early 2015
15/30 V. Blackmore: MICE & nuSTORM 13/09/14 MICE Summary MICE RF Cavity at Fermilab * Recent DOE review of MAP/MICE recommended a demonstration of sustainable ionisation cooling by 2017. The collaboration is evaluating the options by which this can be achieved, including a simplified “Step ” configuration
16/30 V. Blackmore: MICE & nuSTORM 13/09/14 What does the impatient physicist do? Front End Muon Source Acceleration Decay Ring Cartoon based on IDS-NF design 2.8—10 GeV 0.8—2.8 GeV Proton driver (linac option) Phase Rotation Decay Channel to 0.8 GeV Buncher Cooling Target Muon decay ring 562 m 1 2 3 Simplify Skip Shrink p p Neutrino beam m Target Muon Decay Ring n 170 m
17/30 [4] CERN North Area from STORedMuons nuSTORM
18/30 V. Blackmore: MICE & nuSTORM 13/09/14 nuSTORM • Delivers beams of from the decay of 3.8 GeV stored • Known flavour composition and <1% neutrino flux precision • Precise CP-conjugate beams from storing and • Can access all of these channels with % or better accuracy: p p Neutrino beam m Target Muon Decay Ring n 170 m
19/30 V. Blackmore: MICE & nuSTORM 13/09/14 The nuSTORM Triangle NF/HEP muon accelerator proving ground Precision cross-section measurements Definitive measurement of sterile neutrinos
20/30 V. Blackmore: MICE & STORM 13/09/14 The nuSTORM Triangle NF/HEP muon accelerator proving ground Precision cross-section measurements Definitive measurement of sterile neutrinos
21/30 V. Blackmore: MICE & nuSTORM 13/09/14 cross-sections at nuSTORM [6] P. Huber, M. Mezzetto, T. Schwetz • Negligible cross-section measurements at accelerator energy regimes • Significant differences between and cross-sections below 1GeV • cross-sections are essential for CP sensitivity in appearance experiments
22/30 V. Blackmore: MICE & nuSTORM 13/09/14 cross-sections at nuSTORM [6] P. Huber, M. Mezzetto, T. Schwetz • Only nuSTORM can provide 1% level of precision • Intense source • Well known fluxes • sources • and
23/30 [2] P. Coloma, P. Huber, J. Kopp & W. Winter, 2012 Performance with nuSTORM Without cross-section measurements from nuSTORM With cross-section measurements from nuSTORM Superbeams close in on CKM-level precision
24/30 V. Blackmore: MICE & nuSTORM 13/09/14 The nuSTORM Triangle NF/HEP muon accelerator proving ground Precision cross-section measurements Definitive measurement of sterile neutrinos
25/30 V. Blackmore: MICE & nuSTORM 13/09/14 Neutrino oscillations at nuSTORM From J. Spitz, “Searches for Sterile Neutrino Mixing”, nuFACT 2014
26/30 V. Blackmore: MICE & nuSTORM 13/09/14 Neutrino oscillations at nuSTORM [5] The nuSTORM collaboration [4] ThenuSTORM collaboration Far Detector @ 2km • “Wrong sign muon” oscillation signal • Requires magnetised detector • CPT conjugate of LSND • Sensitive to current best fit to at level
27/30 V. Blackmore: MICE & nuSTORM 13/09/14 The nuSTORM Triangle NF/HEP muon accelerator proving ground Precision cross-section measurements Definitive measurement of sterile neutrinos
28/30 V. Blackmore: MICE & nuSTORM 13/09/14 Muon Proving Ground Muon Proving Ground Front End Muon Source Acceleration Decay Ring Cartoon based on IDS-NF design 2.8—10 GeV 0.8—2.8 GeV Proton driver (linac option) Phase Rotation Decay Channel to 0.8 GeV Buncher Cooling Target Muon decay ring 562 m 1 2 3 Physics! Physics! Physics! p p Neutrino beam m Target Muon Decay Ring n 170 m
29/30 V. Blackmore: MICE & nuSTORM 13/09/14 Summary • Muon-based neutrino beams are essential for precision measurement of CP. • High-energy muon sources require a demonstration of sustainable ionisation cooling (MICE) • Influence of material parameters: 2015 • Sustainable cooling: 2017 • nuSTORM requires no cooling and uses existing technology – could be built today. • Supports future neutrino oscillation programs by providing precision measurements of -N cross sections (plus ) • level sensitivity to sterile • Large step forward towards muon accelerators as a powerful new tool for particle physics
30/30 V. Blackmore: MICE & nuSTORM 13/09/14 References [1] CKMfitterCollaboration, Preliminary results as of Winter 2014 (Moriond conference) [2] P. Coloma, P. Huber, J. Kopp & W. Winter, Systematic uncertainties in long-baseline neutrino oscillations for large , arXiv:1209.5973 [3] The MICE Collaboration, Characterisation of the muon beams for the Muon Ionisation Cooling Experiment, EPJC, DOI: 10.1140/epjc/s10052-013-2582-8 [4] The nuSTORM Collaboration, Neutrinos from Stored Muons, nuSTORM, Expression of Interest to CERN, arXiv:1305.1419, Proposal to Fermilab, arXiv:1308.6822 [5] D. Adeyet al (the nuSTORM collaboration), Phys. Rev. D 89, 071301(R), Light sterile neutrino sensitivity at the nuSTORM facility (arXiv: 1402.5250) [6] P. Huber, M. Mezzetto, T. Schwetz, On the impact of systematical uncertainties for the CP violation measurement in superbeam experiments, arXiv:0711.2950