1 / 33

Muscular System

Explore the three types of muscles and their functions, including skeletal, smooth, and cardiac muscles. Learn about muscle structure, properties, and the sliding filament theory of muscle contraction. Discover the anatomy of skeletal muscle and the neuromuscular junction. Dive into muscle contractions, types of respiration, and energy sources for muscle function. Enhance your knowledge of the muscular system with this detailed guide.

brownmario
Download Presentation

Muscular System

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Muscular System

  2. Three types of Muscles Found in the Body

  3. Muscle Structure Functions •Movement (constriction of organs & vessels, heat beating, respiration) •Support (posture) •Heat production Communication Properties of Skeletal (striated) muscle (40% of body weight) •Contractibility - ability of cells to shorten in length •Excitability - ability to receive & respond to stimuli •Extensibility - ability to increase (stretch) in length •Elasticity - ability of a cell to return (recoil) to its resting position after it has contracted or stretched.

  4. All muscle is made of the same two proteins (Actin {troponin & tropomyosin} & Myosin) & require ATP (Adenosine Triphosphate) as energy. 3 Types Appearance Control Nuclei Work Skeletal Striated/Fibers Voluntary/ Multi Pairs Nervous (Flexors - Entensors) Smooth Non-striated/Single Cells Involuntary/ Uni Single Nervous & Endocrine Cardiac Striated/ Single cells Involuntary/ Uni Single Nervous & Endocrine

  5. Anatomy of a skeletal muscle. PART OF THE MUSCLE COVERING or COMPONENT Muscle(fascia)Epimysium Bundle(Muscle fasiculi)Perimysium Fiber(muscle cells)Endomysium or Sarcolemma (cell membrane) MyofibrilsSarcoplasmic reticulum, T-tubules Filaments Myofilaments (Actin& Myosin)

  6. Microscopic Structure

  7. SarcomereContractile unit of the muscle Z disk – protein fiber for attaching actin I Band – light band A Band – darker band H zone – center of each sarcomere M line – place of attachment for myosin

  8. Myofibril

  9. Motor Neuronscarries action potential to the muscle for a contraction. • Motor unit – a group of fibers (muscle) that are responding to a motor neuron, • Very percise movements – only a few • Larger muscle (leg) – several thousand

  10. Neuromuscular Junction Nerve impulse reaches the end of the neuron. Allows calcium to enter the neuron Calcium causes the release of a synaptic vesicle that contains acetylcholine (neurotransmitter) Floods the synaptic cleft to carry the signal to receptors on the muscle.

  11. Sliding Filament theory

  12. All Muscle work in the same way - Sliding Filament Theory 1. Motor neuron transmits an impulse from the brain/spinal cord to the muscle. 2. The electrical impulse is changed into a chemical messenger/neurotransmitter (acetylcholine) at the terminal bud to cross the synaptic cleft. 3. Signal binds to the motor end plate & travels throughout the muscle. 4. Calcium is released from the sarcoplasmic reticulum & binds to troponin & causes it to change. 5. The binding sites are exposed to form a cross bridge with the myosin head & ATP. 6. ATP is broken down to ADP & P & releases energy. 7. Energy that is released causes the myosin head to change shape & resulting in the actin sliding past myosin. 8. New ATP binds to the myosin heads causing the bridge to break from the binding site & return to its original shape. 9. Once returned to its original shape it re-forms a cross bridge. 10. Process repeats.

  13. Stopping the signal 1. All the Acetylcholine must be inactivated at the motor end plate by acetylocholinesterase or AchE from the sarcolemma. 2. Calcium returns back to the sarcoplasmic reticulum by active transport (ATP). 3. Troponin is restored to its original shape.

  14. Sliding Filament Theory

  15. Sliding Filament Theory

  16. Muscle Twitch – Muscle contraction in response to a stimuli 1. Threshold stimuli - weakest stimuli that can initiate a contraction. 2. Subthreshold stimuli - stimuli that will not cause a contraction. 3. All or none response - stimuli that is stronger than the threshold stimuli & will cause a muscle to contract completely. 4. Recruitment - activating more muscle fibers in corresponding to a stimuli.

  17. Types of Muscle Contractions 1. Twitch - basic unit of muscle contraction. •Rapid response to a single stimuli that is slightly over threshold. •Lasts on 1/10 of a second. Phases of a twitch •Lag phase - delay contraction from the time the signal is sent. •Contraction phase- muscle contracts (shortens). •Relaxation phase- muscle returns to its original shape.

  18. 2. Wave contraction Muscle to contract & lasts for a definite period of time. Wave summation - second signal is sent before the first is completed causing the second contraction to be stronger than the first.

  19. 3. Tetanus Sustained contraction that occurs when the frequency of stimulation is so rapid that there is no relaxation. Incomplete tetanus - partial relaxation occurs between each stimuli (20 - 30/second). Complete tetanus - fusion of twitches & provides a forceful contraction (35-50/sec).

  20. Energy for Contraction 1. ATP (muscles can not store ATP) 2. Creatine Phosphate 3. Glycogen Uses for energy 1. Mechanical movement of cross bridges. 2. Breakage of cross bridges from actin. 3. Return of calcium to the sarcoplasmic reticulum. Types of respiration Aerobic – with oxygen 18x’s more efficient, but slower. Anaerobic – without oxygen, but faster with a price.

  21. Muscle Exercise Psychological fatigue – more of the nervous system Muscle fatigue Muscles require food, oxygen & waste removal to function properly. During sustained exercise blood can not always deliver enough oxygen to the muscle - oxygen debt. To get energy, the muscle performs lactic acid fermentation (anaerobic) to get energy. ATP is produced, & a waste - lactic acid. Increase in lactic acid causes the pH to lower, therefore reducing the muscles ability to contract - muscle fatigue. Cramp -muscle contracts spasmodically without relaxing & is caused by an insufficient amount of ATP to properly return the calcium back to the sarcoplasmic reticulum. Muscle use can increase in size. Lack of use can decrease in size -atrophy

  22. Types of muscle contraction 1. Isotonic - Produces movement, the muscle pulls an attach structure (bone) towards a more stationary structure. 2. Isometric - Produces muscle tension but does not shorten (no movement). 3. Concentric contraction – isotonic contraction when lifting a weight. 4. Eccentric contraction – isotonic contraction when lowering a weight. Slow & Fast Fibers Slow type I myosin – contract & fatigue slowly Darker muscle - myoglobin ability to store oxygen. Fast type II (a or x) myosin – contract & fatigue quickly

  23. Production of Movement Origin - muscle attachment to the more stationary bone. Insertion - muscle attachment to the more movable bone. Group Actions Group action - coordinated response of a group of muscles in order to bring a body movement. Prime movers - desired action. Antagonist - relaxes during the contraction. Synergists - steady the movement. Fixators - stabilize the origin of the prime mover

  24. Major Muscles of the BodyAnterior

  25. Major Muscles of the BodyPosterior

  26. Muscles of the Head & Neck

  27. Muscles of the Upper Back

  28. Muscles of the Upper Chest

  29. Muscles of the Upper Arm

  30. Muscles of the Lower Arm

  31. Muscles of the Abdominal Pelvic

  32. Muscles of the Upper Leg

  33. Muscles of the Lower Leg

More Related