210 likes | 407 Views
EXPERIMENTOS FATORIAIS FRACIONÁRIOS (III). Delineamento fatorial fracionário 2 k-p. PROCEDIMENTO GERAL PARA CONSTRUÇÃO DE UM DELINEAMENTO FRACIONÁRIO 2 k - p. Para construir um experimento fatorial fracionado 2 k - p , as seguintes etapas podem ser adotadas:
E N D
Delineamento fatorial fracionário 2k-p • PROCEDIMENTO GERAL PARA CONSTRUÇÃO DE UM • DELINEAMENTO FRACIONÁRIO 2k-p Para construir um experimento fatorial fracionado 2k-p, as seguintes etapas podem ser adotadas: Escrever a tabela de contrastes para o fatorial completo 2c, onde c = k-p; Completar a tabela com os fatores faltantes, usando os confundimentos propostos por Montgomery (Anexo); Obter o gerador de confundimentos (I), que terá 2p termos; Determinar o esquema de confundimentos, obtido pelo produto módulo 2 de efeitos principais e algumas interações de baixa ordem na relação de definição em (3).
Delineamento fatorial fracionário 2k-p anexo • Exemplo: DELINEAMENTO 27-4 Gerador de confundimento: I = ABD = ACE = BCF = ABCG = BCDE = ACDF = ABEF = CDG = BEG = AFG = DEF = ADEG = BDFG = CEFG = ABCDEFG com 24 = 16 termos. A partir do gerador de confundimento encontra-se o esquema de confundimento, com 7 relações de confundimento, cada uma com 16 termos, em que resulta todo efeito principal confundido com alguma interação dupla. Confundimentos de fatores principais até interações triplas (quádruplas, quíntuplas e sêxtuplas foram omitidas): A = BD = CE = FG = BCG = BEF = CDF = DEG = ... B = AD = CF = EG = ACG = AEF = CDE = DFG =... C = AE = BF = DG = ABG = ADF = BDE = EFG = ... D = AB = CG = EF = ACF = AEG = BCE = BFG = ... E = AC = BG = DF = ABF = ADG = BCD = CFG = ... F = AG = BC = DE = ABE = ACD = BDG = CEG = ... G = AF = BE = CD = ABC = ADE = BDF = CEF = ...
Delineamento fatorial fracionário 2k-p anexo • Exemplo: DELINEAMENTO 27-4 OBSERVAÇÕES IMPORTANTES: A resolução deste delineamento é III. A todas as colunas é atribuído um fator e, por este motivo, este delineamento é chamado de saturado. Note que para se fazer um delineamento saturado com k fatores são necessárias N = k + 1 experiências/tratamentos, no mínimo. Neste tipo de delineamento, não é possível se obter estimativas das interações duplas e triplas de todos os fatores. • Consequência: O preço que se paga por realizar uma quantidade reduzida de tratamentos é um confundimento (talvez, neste caso, “confusão”) cada vez maior entre efeitos principais e interações. • (No exemplo, 8 experiências realizadas das 128 possíveis, com 7 fatores).
anexo • Delineamento fatorial fracionário 2k-p • Exemplo: Bicicleta (cont) delineamento fatorial fracionado 27-4 • Joãozinho chegou à conclusão de que a marcha utilizada (fator D) é o fator mais importante para conseguir um tempo baixo. Entretanto, este fator está confundido com outros (D = AB = EF = CG). Para tirar a dúvida da significância desse fator, um rebatimento do experimento pode ser feito. Obs.: A coluna D tem sinal trocado com o delineamento anterior e as demais não são alteradas.
anexo • Delineamento fatorial fracionário 2k-p • Exemplo: Bicicleta (cont) delineamento fatorial fracionado 27-4 • Os efeitos estimados, para este rebatimento, ficam • No delineamento anterior:
anexo • Delineamento fatorial fracionário 2k-p • Exemplo: Bicicleta (cont) delineamento fatorial fracionado 27-4 • Através da análise dos contrastes, pode-se perceber que juntando os resultados de ambos experimentos resulta em: Qual é a conclusão?
anexo • Delineamento fatorial fracionário 2k-p • Exemplo: Bicicleta (cont) delineamento fatorial fracionado 27-4
Delineamento fatorial fracionário 2k-p anexo • DELINEAMENTOS EXPLORATÓRIOS Experimentos exploratórios (screeningexperiments– experimentos pilotos) são realizados nos estágios iniciais de uma nova pesquisa, quando pouco se sabe sobre o conjunto de fatores importantes ou ativos. Em geral, neste ponto da pesquisa, o pesquisador precisa considerar um número muito grande de fatores a fim de identificar os mais importantes. Objetivo Delineamentos exploratórios visam identificar os poucos fatores dominantes dentre um grande número de candidatos e, portanto, são delineamentos que testam somente uma pequena fração do fatorial completo. Possuem baixa resolução, já que costumam confundir efeitos principais com interações duplas, triplas, etc. Vimos que um método para investigar a significância de muitos fatores com um número reduzido de tratamentos é considerar experimentos fatoriais fracionados.
Delineamentos Exploratórios MAIS QUE 10 FATORES DELINEAMENTO EXPLORATÓRIO 5 A 10 FATORES DELINEAMENTO FATORIAL FRACIONADO MENOS QUE 5 FATORES DELINEAMENTO FATORIAL COMPLETO
Delineamento fatorial fracionário 2k-p anexo • PLANEJAMENTOS PLACKETT-BURMAN Uma limitação dos planejamentos fatoriais fracionados de resolução III é que o número de tratamentos é uma potência de 2. Assim, são planejamentos com 4, 8, 16, 32, ..., 2k-p unidades experimentais ou experiências realizadas. • Uma classe de planejamentos resolução III desenvolvidos por Plackett-Burman (1946), requerendo um número de unidades experimentais N igual a um múltiplo de 4 é muito utilizado para experimentos pilotos em pesquisa industrial. Eles fornecem o planejamento para valores intermediários de N que não são potência de 2. • Na literatura são encontrados planejamentos Plackett-Burman para N 100, exceto para 92. No anexo encontra-se um tabela destes planejamentos para N = 12, 16, 20, 24 e 32 unidades experimentais. • Planejamentos Plackett-Burman a 2 níveis de resolução III podem ser usados para estudar até k = N - 1 fatores. Quando N é uma potência de 2, os planejamentos Plackett-Burmancorrespondem aos fatoriais fracionados resolução III já discutidos.
Delineamento fatorial fracionário 2k-p anexo • PLANEJAMENTOS PLACKETT-BURMAN Para construir um delineamento exploratório desse tipo, adotar o seguinte procedimento: Determinar o número total de fatores k a serem testados; Calcular o número mínimo de experiências necessárias N=k+1; Selecionar na tabela (anexa) de geradores de delineamento (com 1´s e -1´s), o primeiro número de experiências E maior ou igual a N (múltiplo de 4); Copiar na primeira linha da tabela de contrastes os valores da coluna E considerada, na ordem em que aparecem; Na linha seguinte, deslocar a linha anterior de uma coluna para a esquerda, fazendo com que o 1º. da linha anterior fique ao final desta linha; Proceder assim, sucessivamente, até completar toda a tabela de contrastes; A interpretação dos resultados, quanto a sua validade estatística, é feita da mesma forma que os delineamentos fatoriais fracionados.
Delineamento fatorial fracionário 2k-p anexo • Exemplo: planejamentos Plackett-Burman O professor X desconfia que 12 diferentes fatores podem influenciar o condicionamento de crianças, segundo o método Pavlov. Construir a tabela de contrastes para um delineamento exploratório (Plackett-Burman). Como há 12 fatores em avaliação, então temos k = 12 fatores N = k+1 = 13 o primeiro E 13 é 16 Como fica a tabela de contrastes nesse caso?
Delineamento fatorial fracionário 2k-p anexo • Exemplo: planejamentos Plackett-Burman Completar as tres últimas linhas. Obs.: Com 16 experiências conseguimos avaliar 12 fatores.
anexo ANEXO: SUGESTÕES DE GERADORES DE CONFUNDIMENTO volta volta
ANEXO: SUGESTÕES DE GERADORES DE CONFUNDIMENTO (cont) Fonte: MONTGOMERY, D.C. Design and analysis of experiments. 3 ed. New York, John Wiley, 1991.
ANEXO:Geradores de Delineamentos Aleatórios anexo Fonte: GUNST, R.F.; MASON, R.L. How to construct fractional factorial experiments. Milwaukee, ASQC Quality Press, 1991.