360 likes | 487 Views
Távközlő Hálózatok 25. el őadás 10. Szemelvények a fizikai rétegből 11. Az információközlő hálózatok felépítésének elvei. Németh Krisztián BME TMIT 2007. máj. 17. Hol tartunk?. 0. Bevezetés 1. Távközlő hálózati architektúrák
E N D
Távközlő Hálózatok25. előadás10. Szemelvények a fizikai rétegből11. Az információközlő hálózatok felépítésének elvei Németh Krisztián BME TMIT 2007. máj. 17.
Hol tartunk? • 0. Bevezetés • 1. Távközlő hálózati architektúrák Hívószámkiosztás, analóg és digitális telefonhálózati architektúra • 2. Jelzésrendszerek Előfizető és központ közötti, központok közötti • 3. Távközlési protokollok • 4. Gerinchálózati technikák PDH, SDH, ATM, MPLS, OTN, NGSDH, stb. • 5. IP szélessávú hozzáférési technikák Analóg vonali modem, ADSL, xDSL, kábel-TV, stb. • 6. Kapcsolástechnika • 7. Mobil távközlő rendszerek Műholdas rendszerek, mobil számítógép hálózatok, GSM, UMTS • 8. VoIP, kodekek • 9. Jelátviteli és forgalmi követelmények • 10. Szemelvények a fizikai rétegből (bonus track :-) ) • 11. Az információközlő hálózatok felépítésének elvei Németh K. Csopaki Gy. Cinkler T. Németh K.
Követelmények csomagkapcsolt hálózatokban • Jelátviteli és forgalmi követelmények • Információtípusok, jelek és hálózatok • Beszédátviteli követelmények • Távbeszélő-hálózatok forgalmi jellemzése • Beszédkódolók • Követelmények csomagkapcsolt hálózatokban
Követelmények csomagkapcsolt hálózatokban • Sokféle alkalmazás, sokféle követelmény • Alkalmazások, pl.: • e-mail • telefonálás • videotelefonálás • film megnézése valós időben • Minőségi paraméterek: • csomagkésleltetés • csomagkésleltetés ingadozása (angolul packet delay variation, vagy packet jitter) • csomagvesztési arány • téves csomagkézbesítési arány • (adatsebesség mennyiségi és nem minőségi paraméter)
Követelmények csomagkapcsolt hálózatokban • Sokféle alkalmazás, sokféle követelmény • nagyon sok kombináció • legtöbbször nincs is megadva (pl. szabványban) • Pár példa: • VoIP csomagkésleltetés: mint PSTN-nél: 250 ms, visszhangtörlés szükséges 12,5 ms felett • VoIP csomagvesztés: kodektől függ, kb. 5-30% a határ • igény szerinti videózás (Video-on-Demand, VoD): • késleltetés: akár 5-10 sec. • késleltetésingadozás legyen alacsony (puffertől függ)
Csomagkapcsolt hálózatok forgalmi modellezése (továbbiakban TCP/IP-ről beszélünk) • Cél: hálózatméretezés tudományos megalapozása • Távbeszélő hálózatokénál lényegesen nehezebb, mert: • alkalmazások: • sokféle, különféle hálózati igényekkel • időben, térben változó összetételű alkalmazás-mix • évről évre jelentős változások lehetnek a tipikusan használt alkalmazásokban (nehéz középtávra tervezni) • alkalmazások erőforrásigénye is nehezen meghatározható (pl. e-mail hossza bájtban) • elasztikus folyamok • pl. FTP, HTTP, e-mail továbbítás • a rendelkezésre álló teljes sávszélességet elfoglalják • nehezen definiálható az erőforrásigény
Csomagkapcsolt hálózatok forgalmi modellezése • Távbeszélő hálózatokénál lényegesen nehezebb, mert: • nem független források: • elasztikus folyamok és a TCP garantálja a teljes sávszélesség kihasználást • emiatt blokkolás, különböző források csomagjai versengenek a továbbításért • követk.: nem független források • Következmények: • Hosszú távú összefüggés (időben távoli értékek is korreláltak) • Önhasonlóság: különböző időskálákon nézve is hasonló forgalmi jelleg (forgalom: bit/s, csomag/s) • Nagy börsztösség, csomósodás • PSTN: n-szeres felhasználó, forgalom átlaga is n-szeres, de szórása -szeres: a forgalom „kisimul” • TCP/IP: a forgalom sokkal lassabban „simul ki”
Csomagkapcsolt hálózatok forgalmi modellezése • Ezek miatt a TCP/IP forgalommodellezés még gyerekcipőben jár • bár vannak bíztató eredmények • Akkor hogyan lehet TCP/IP hálózatot méretezni? • tapasztalatok alapján • mérések alapján • túlméretezés (overprovisioning) • másik ok a túlméretezés mellett: olcsó a kapacitás, de jelentős a bevétel: nem szabad egy vevőt sem elszalasztani kapacitáshiány miatt
Hol tartunk? • 0. Bevezetés • 1. Távközlő hálózati architektúrák Hívószámkiosztás, analóg és digitális telefonhálózati architektúra • 2. Jelzésrendszerek Előfizető és központ közötti, központok közötti • 3. Távközlési protokollok • 4. Gerinchálózati technikák PDH, SDH, ATM, MPLS, OTN, NGSDH, stb. • 5. IP szélessávú hozzáférési technikák Analóg vonali modem, ADSL, xDSL, kábel-TV, stb. • 6. Kapcsolástechnika • 7. Mobil távközlő rendszerek Műholdas rendszerek, mobil számítógép hálózatok, GSM, UMTS • 8. VoIP, kodekek • 9. Jelátviteli és forgalmi követelmények • 10. Szemelvények a fizikai rétegből (bonus track :-) ) • 11. Az információközlő hálózatok felépítésének elvei Németh K. Csopaki Gy. Cinkler T. Németh K.
Szemelvények a fizikai rétegből • 6 témakör: • visszhang • elhalkulás (fading) • mikrohullámú rádiós átvitel • digitális jelek átvitele analóg csatornán • illesztett lezárás • Javasolt irodalom: weblapon található Kovács-Ludányi jegyzet • a weblap alján: korábbi félévek, majd ott a 2005. tavasz kiválasztása
visszhang visszhang önhang önhang hurok! Visszhang • Több helyen keletkezhet, de a 2/4 huzalos átalakításnál jellemző • Példa átviteli út: (egy vonal egy vezeték) (műholdas átvitelnél akár ennél is több)
Visszhang • Önhang: • hasznos! • kb. 25 dB csillapítás • A hurkot ki kell küszöbölni, hogy: • ne gerjedjen • ne torzítsa az átvitelt • ne legyen többszörös visszhang • Visszhang: • 12,5 ms alatt nem különböztethető meg az önhangtól (nincs vele gond) • kritikus táv, ha csak a terjedési késleltetést nézzük:0,0125 s * 250 000 km/s = 3125 km 3000 km(közegbeli fénysebesség alacsonyabb c-nél)de ez oda-vissza értendő, tehát kb. 1500 km földrajzi táv a kritikus • felette valamit kezdeni kell vele • 31 dB, vagy nagyobb csillapítás már jó
Visszhang kezelése • Visszhangzár: • ugyanez a túloldalon is • VAD: Voice Activity Detector, beszéddetektor: • észleli, hogy éppen beszél-e a távoli fél • beszéd esetén e kapcsolás lezárja a visszamenő erősítőt • emiatt félduplex • elavult
Visszhang kezelése • Visszhangtörlő (VT, echo canceller) • ugyanez a túloldalon is • feladata a visszhang modellezése • megfelelő késleltetés • megfelelő csillapítás • megfelelő torzítás • ezek időben változhatnak, mert: • környezeti hatások (pl. hő) változnak • kihangosítást bekapcsolhatják menet közben • ezért adaptív eszköz a hibajel mérésével: • visszhang felismerése és törlése
Elhalkulás (fading) • Oka: többutas terjedés (multipath propagation) • jel visszaverődik a földfelszínről, tereptárgyakról • több jel szuperpozíciója jelenik meg, ezek gyengítik vagy erősítik egymást • megj.: visszaverődés: 180 fokos fázistolás
Elhalkulás (fading) • Kioltási helyek: • k=1,2,... • GSM:
Elhalkulás (fading) • Hatásai: • mozgó adó: nagyobb adási teljesítmény szükséges • akkumulátor merítése • élettani hatás • mozgó vevő: • rosszabb jel/zaj viszony • Mit tehetünk ellene? • jel fókuszálása (pl. forgási paraboloid antenna) • hibajavító kódolás (FEC) • többféle átvitel (diversity) • időben: jel ismétlése (közben mozogni kell) • térben: két vevőantenna (térben távolabb egymástól) • frekvenciában: két frekvencia használata: más kioltási helyek
Mikrohullámú rádiós átvitel • Gerinchálózat: rádiós ismétlő lánc • néhány GHz-es tartomány • hurok kiiktatása: más frekvencián adás és vétel • eső, köd, hó zavarja • Hozzáférői hálózat • gyors telepítés • ritkán lakott helyeken előnyös
Digitális jelek átvitele analóg csatornán • Ennek van egyenáram (DC, Direct Current) komponense: • A nulla frekvencia közelében nem lehet információt átvinni
Digitális jelek átvitele analóg csatornán • A nulla frekvencia közelében nem lehet információt átvinni, mert: • fémvezető: • távtáplálás • nagyfesz. védelem: transzformátoros leválasztás • 50 Hz és felharmonikusai: 100, 150 Hz bezavarna • koax 60 kHz alatt nem visz át • optikai kábel: • csak az optikai tartományban visz át • rádiós átvitel: • minimum kHz-es nagyságrend kell itt is
Digitális jelek átvitele analóg csatornán • A nulla frekvencia közelében nem lehet információt átvinni. Megoldások: • vonali kódolás (pl. ugyanannyi +1V mint -1V) • pl. LAN, ISDN, PDH, SDH • egyszerű • de sávszélesség-pazarló: B>>1/T • B: sávszélesség • T: bitidő
Digitális jelek átvitele analóg csatornán • A nulla frekvencia közelében nem lehet információt átvinni. Megoldások: • moduláció/demoduláció • pl. frekvenciamoduláció, amplitúdómoduláció, fázismoduláció • egy adott vivőfrekvencia (fv) környékére korlátozza a spektrumot • bonyolultabb • nem pazarolja a sávszélességet: B 1/T (adott jel/zaj viszony, ld. Shannon-tételes megjegyzés korábban) • használata: • erősen sávkorlátozott környezetben, illetve adott átviteli frekvenciatartomány esetén • pl. rádiós átv., optikai átvitel, telefonmodemek
Digitális jelek átvitele analóg csatornán • Másik probléma: szinkronitás fenntartása • elegendő nullátmenet kell. Ez biztosítható: • megfelelő vonal kódolással • modem: bitkeverővel (scrambler) • bináris álvéletlen sorozat • ebben 0,5 valószínűsége a 0-nak és az 1-nek • mod 2 hozzáadás az adó és vevő oldalon is
Illesztett lezárás • Fémvezetékpár egy differenciálisan kicsi, δ hosszú darabjának modellje: • R: ohmikus ellenállás [ohm/km] • L: induktivitás [H/km] • G: ohmos átvezetés [siemens/km] • C: kapacitás [fahrad/km]. • Egyik irányban végtelen szakasz: elemi szakaszon mért impedanciák összege • véges lesz • hullámimpedancia, Z0
Illesztett lezárás • Véges esetben a végén visszaverődés lesz • egyik felén végtelen esetben természetesen nem • a véges szakaszt olyan impedanciával kell lezárni, hogy „úgy tűnjön”, mintha végtelen vezeték lenne (valós!)
Hol tartunk? • 0. Bevezetés • 1. Távközlő hálózati architektúrák Hívószámkiosztás, analóg és digitális telefonhálózati architektúra • 2. Jelzésrendszerek Előfizető és központ közötti, központok közötti • 3. Távközlési protokollok • 4. Gerinchálózati technikák PDH, SDH, ATM, MPLS, OTN, NGSDH, stb. • 5. IP szélessávú hozzáférési technikák Analóg vonali modem, ADSL, xDSL, kábel-TV, stb. • 6. Kapcsolástechnika • 7. Mobil távközlő rendszerek Műholdas rendszerek, mobil számítógép hálózatok, GSM, UMTS • 8. VoIP, kodekek • 9. Jelátviteli és forgalmi követelmények • 10. Szemelvények a fizikai rétegből (bonus track :-) ) • 11. Az információközlő hálózatok felépítésének elvei Németh K. Csopaki Gy. Cinkler T. Németh K.
Modellek, modellezés... (Ez a rész már nem vizsgaanyag!)
Az információközlő hálózatok összekapcsolása • Összekapcsolás előnyei: • sok kis hálózatból nagyot • Internet eleve ilyen • különböző szolgáltatók ügyfelei kommunikálhatnak • inkrementális fejlesztés lehetséges • pl. IPv4 IPv6, analóg digitális telefon • gazdasági előny, pl. VoIP • stb., stb. • Ennek nézzük az elvi műszaki hátterét
Hordozó és távszolgáltató hálózatok (ism.) • Hordozó hálózat (bearer network) : • Def: két vagy több pont közötti átlátszó – a hálózat által nem értelmezett, nem feldolgozott – adatátvitelt biztosít • nincs végberendezés • nincs alkalmazás • önmagában nem fordul elő • a szolgáltatás neve: hordozó szolgáltatás • pl. 64 kb/s átlátszó adatátvitel • Távszolgáltató hálózat (teleservice network) : • létezik végberendezés • létezik alkalmazás • az átvitt információ ennek megfelelő, a hálózat a jelet módosíthatja, amíg az alkalmazásnak ez megfelelő • a szolgáltatás neve: távszolgáltatás • pl. távbeszélő szolgáltatás
Hálózatok és összekapcsolásuk • SzgH és TH is lehet hordozó, távszolgáltató is • Két féle összekapcsolás lehetséges: • egyenrangú • hierarchikus
Hálózatok egyenrangú összekapcsolása • Egyenrangú együttműködés • 2 távszolgáltató vagy 2 hordozó hálózat között • E: SzgH: átjárónak (gateway) is nevezik • FTH: kb. hálózat - (végberendezés + együttműködtető egység) • Egyszerűbb jelölés:
Hálózatok egyenrangú összekapcsolása • Legfőbb okok: technológiai vagy igazgatási eltérés • Technológiai eltérés, pl.: • (egy tulajdonban lévő) vezetékes és mozgó távbeszélő hálózat • Igazgatási eltérés, pl.: • két telefontársaság • céges Intranet és Internet. Ekkor átjáró pl. a tűzfal • Persze lehet a két eltéréstípus együtt is, pl: • külön tulajdonban lévő vezetékes és mozgó távbeszélő hálózat
Hálózatok hierarchikus összekapcsolása • Hierarchikus együttműködés • Egy távszolgáltató és egy hordozó vagy 2 hordozó hálózat között • Mindkét oldalon FTH1! • Felső ráépített, alsó alaphálózat • Egyszerűbb jelölés:
Hálózatok hierarchikus összekapcsolása • Ok: technológiai eltérés • (Igazgatási eltérés is lehetséges, ezen felül) • példák: • PDH SDH felett • SDH: nagy adatsebesség, jól menedzselhető • PDH: 64 kb/s közvetlenül felhasználható • IPv6 IPv4 felett • IPv6 szigetek összekötése IPv4-gyel • „alagutazás/tunneling” • sok variáció lehetséges, pl.:
Összekapcsolások kombinálása • A különböző típusú összekapcsolások kombinálhatóak. • Pl.: IP hálózat adatainak átvitele egy SDH rendszer felett, amely két szolgáltatóhoz tartozik: azaz:
Technológiai modellezés • A hierarchikus összekapcsolás tulajdonképpen felfogható rétegmodellnek: • minden réteg csak a szomszédaival kommunikál • persze egy technológiai réteg több OSI réteget tartalmazhat, ezekről majd később • Pl.: