1 / 30

Matematyczne techniki zarządzania - 91

Matematyczne techniki zarządzania - 91. Testowanie równości wariancji populacji. Stosuje się test Hartleya zwany też testem F max , który pozwala rozstrzygnąć czy próbki pochodzą z populacji o jednakowej wariancji (czy wariancje pró-bek są homogeniczne).

chance
Download Presentation

Matematyczne techniki zarządzania - 91

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Matematyczne techniki zarządzania - 91 Testowanie równości wariancji populacji Stosuje się test Hartleya zwany też testem Fmax, który pozwala rozstrzygnąć czy próbki pochodzą z populacji o jednakowej wariancji (czy wariancje pró-bek są homogeniczne). Jeśli założymy, że każda populacja ma rozkład normalny i że ich wariancje są równe 2i(i = 1, 2, ..., k), to możemy zweryfikować hipotezy H0: 21=22 = .... =2k H1: nie wszystkie 2i są jednakowe Reguła decyzyjna: odrzucamy H0, jeżeli odczytujemy ze specjalnej tablicy, gdzie: k — liczba czynników i(max) — największa liczba stopni swobody spośród próbek Przykład 27 cd. Wariancje próbek dla poszczególnych skryptów: 114,889; 325,111; 292,000. Stąd =0,05 k=3 i(max)=9 Ftabl=5,34 JAKI WNIOSEK?

  2. Matematyczne techniki zarządzania - 92 ANALIZA WARIANCJI DWUCZYNNIKOWA SSTO CZYNNIK xij — wartość obserwacji w i-tym poziomie bloku i j- tym poziomie czynnika  — ogólna średnia zmiennej X i — odchylenie średniej i-tego poziomu bloku od  j— odchylenie średniej j-tego poziomu czynnika od  ij— składnik losowy (reszta) N(0; 2) [ — ksi] BLOK RESZTA CZYNNIK=BLOK RANDOMIZED BLOCK DESIGN • Założenia: • mamy losowe próbki z n poziomów bloku i przydzielamy losowo jednostki z każdego bloku do każdego z k poziomów czynnika • reakcja w i-tym poziomie bloku na j-ty poziom czynnika pochodzi z rozkładu normalnego • wariancja każdej populacji nkwynosi 2 • nie ma wzajemnego oddziaływania między blokiem i czynnikiem

  3. Matematyczne techniki zarządzania - 93 Przykład 29. Zmienną losową X jest ilość kilometrów przejechanych na 1 litrze benzyny różnej marki. Do pomiarów używamy 5 różnych samochodów: CZYNNIK BLOK % • Co można stwierdzić „gołym okiem”: • czy marka benzyny wpływa na jej zużycie? • czy egzemplarz użytego samochodu wpływa na zużycie paliwa? Tabelka ANOWY

  4. Matematyczne techniki zarządzania - 94 • Przyjmujemy  = 0,01 i stawiamy hipotezy: • H0: czynnik nie wpływa... H1: czynnik... • H0: blok nie wpływa... H1: blok... • JAKI JEST OFICJALNY JĘZYK TYCH HIPOTEZ? • Wartości krytyczne testu Fishera: Decyzje i wnioski................................................................................. ANALIZA WARIANCJI DWUCZYNNIKOWA Z UWZGLĘDNIENIEM WZAJEMNEGO ODDZIAŁYWANIA CZYNNIKÓW CZYNNIK A SUMY KWADRATÓW ŚREDNIE KWADRATY CZYN-NIK B SSA SSB SSAB SSE SSTO CZYNNIK A i B RESZTA SSTO ZAŁOŻENIA!

  5. Matematyczne techniki zarządzania - 95 Przykład 30. W pewnym przedsiębiorstwie postanowiono przeprowadzić badania co wpływa na sukces kierowników sklepów — wykształcenie czy doświadczenie. Z dużej liczby sklepów wylosowano 24 kierowników i dla każdego określono współczynnik sukcesu będący ilorazem rzeczywistej rocznej sprzedaży do sprzedaży prognozowanej, określonej na podstawie równania regresji uwzględniającego lokalizację, powierzchnię, liczbę pra-coników itd. Wykształcenie Staż n = 24 1. 8 — P 1. 6 — <5 lat 2. 8 — Ś 2. 6 — 5-10 lat 3. 8 — W 3. 6 — 10-15 lat 4. 6 — >15 lat %

  6. Matematyczne techniki zarządzania - 96 Można rozwiązać dwa problemy: 1. H0: nie ma wzajemnego oddziaływania czynników A i B H1: jest wzajemne oddziaływanie A i B Odrzucamy H0, jeżeli 2. H0: czynnik A (lub B) nie wpływa na pracę kierownika H1: czynnik A (lub B) wpływa na pracę kierownika Odrzucamy H0, jeżeli  b—1 ANALIZA REGRESJI I KORELACJI • umożliwia badanie wpływu czynników mierzalnych, takich jak: czas nauki, zużycie materiałów, wielkość produkcji itd. • umożliwia ustalanie przyczyn zachowania się danego zjawiska: dlacze-go rosną koszty, co powoduje straty w firmie itd. • jest to bardzo popularna metoda, zgodna z naszą intuicją • obliczenia wykonuje się metodą najmniejszych kwadratów • stosuje: estymację, testowanie hipotez, analizę wariancji itd.

  7. Matematyczne techniki zarządzania - 97 Bardzo często robimy — odruchowo — wykres zależności dwu zmiennych: Y model rzeczywistości Zapisujemy to jako: obserwacje empiryczne Dla układu trójwymiarowego: X Zmienna losowa wielowymiarowa xijkllub xi, yj, zkitd. Tablica dwudzielna • dwa wymiary • Pij — „trzeci wymiar” • Pi i Pj — rozkłady brzegowe • suma =1 • jeśli rozkłady normalne, to równanie liniowe

  8. Matematyczne techniki zarządzania - 98 • Trzy rodzaje związków pomiędzy Y i X • związek funkcyjny (deterministyczny) Y yi Domena — matematyka KAŻDEJ WARTOŚCI xi ODPOWIADA JEDNA I TYLKO JEDNA WARTOŚĆ yi xi X • związek stochastyczny (losowy) • Domena — rzeczywistość • KAŻDEJ WARTOŚCI xi ODPOWIADA CAŁY ZBIÓR WARTOŚCI yi TWORZACYCH OKREŚLONY ROZKŁAD Obserwacja rzeczywistości DANE Lp. xi yi 1x1 y1 2x2 y2 3 x3 y3 ............  xi Waga i wzrost studentek

  9. Matematyczne techniki zarządzania - 99 • związek statystyczny Domena — model rzeczywistości — średnia rozkładu  — obrazuje rozrzut — środek ciężkości zbioru xi • Dlaczego w rzeczywistości mamy do czynienia ze związkami stochastycznymi? • Podstawowe pojęcia i terminy • KORELACJA— fakt powiązania, współzależności, związku zmiennych ze sobą • WSPÓŁCZYNNIK KORELACJI— liczba określająca siłę i kierunek tego związku • współczynnik korelacji liniowej dwu zmiennych: r lub rxy r Współczynnik r niesie dwie informacje poprzez swój znak i moduł

  10. Matematyczne techniki zarządzania - 100 Znak informuje o kierunku zależności r>0 r<0 Korelacja dodatnia Korelacja ujemna Moduł informuje o sile zależności r=1 r=0,5 r=0 Który współczynnik korelacji jest korzystniejszy: —0,8 czy 0,2?

  11. Matematyczne techniki zarządzania - 101 • współczynnik korelacji liniowej wielu zmiennych (korelacji wielo-krotnej lub wielorakiej): R R • Interpretacja: • im wyższa wartość R, tym silniejsza współzależność (R=0: brak korelacji, R=1: zależność funkcyjna, nie ma składnika losowego) • R określa siłę powiązania zmiennej Y z wszystkimi zmiennymi Xi, bez względu na to jak poszczególne z nich są skorelowane z Y • współczynnik korelacji cząstkowej dwu zmiennych • REGRESJA— funkcja odzwierciedlająca powiązanie zmiennych (czynników) • w mowie potocznej regresja to cofanie się, spadek, zanik • skąd się wzięło to słowo w statystyce?  wzrost synów WSPÓŁCZYNNIK REGRESJI — liczba stojąca przy każdej zmiennej X, określająca jej wpływ na zmienną Y a wzrost ojców a — wyraz wolny (stała), współrzędna punktu przecięcia z osią Y b — współczynnik regresji, tangens kąta  nachylenia prostej

  12. Matematyczne techniki zarządzania - 102 • Czynności przy badaniu zależności zmiennych • określenie co jest skutkiem (Y), a co przyczynami (X1, X2, itd.) • zebranie danych (pobranie próbki statystycznej) • wyznaczenie równania regresji dla próbki • sprawdzenie (testowanie) czy równanie to może być przyjęte dla populacji • wnioskowanie o przyczynach na podstawie zweryfikowanego równania • Funkcja regresji I i II rodzaju • regresja I rodzaju dotyczy populacji (jest nieznana)  • regresja II rodzaju dotyczy próbki (jest znana) Współczynniki regresji to i oraz ai; tak jak przy estymacji innych parametrów mamy to do czynienia z estymatorami, ich odchyleniami standardowymi (czyli błędami oszacowania) oraz z wartościami oszacowanymi.

  13. Matematyczne techniki zarządzania - 103 Wydruk komputerowy równania regresji Pełny zapis równania regresji Y reszta ui X2 (wszystkie punkty czerwone) parametry strukturalne i stochastyczne X1 Y —zmienna zależna, zmienna-skutek, zmienna objaśniana yi — zaobserwowane wartości zmiennej zależnej dla jednostek próbki Xk — zmienne niezależne, zmienne-przyczyny, zmienne objaśniające xki — zaobserwowane wartości zmiennych niezależnych a0 — oszacowana wartość wyrazu wolnego (interpretację podano)

  14. Matematyczne techniki zarządzania - 104 ai... — oszacowane wartości współczynników regresji; określają wpływ poszczególnych zmiennych Xi na zmienną Y  — składnik losowy, reprezentujący rozrzut punktów wokół płaszczyz-ny regresji; składnik ten jest zmienną losową; jego wartości nazywają się reszty a jego rozkład jest rozkładem normalnym o E()=0 i V()=s2(y) s(a0) — błąd oszacowania wyrazu wolnego; służy do budowy przedziału ufności dla nieznanej wartości wyrazu wolnego 0dla populacji oraz do weryfikacji istotności 0(H0: 0=0) s(ai) — błędy oszacowania współczynników regresji; służą do budowy przedziału ufności dla nieznanych wartości i współczynników regresji dla populacji oraz do weryfikacji ich istotności (H0: i=0) s(y) — błąd resztowy; jest odchyleniem standardowym składnika losowego ; określa średnią wielkość reszty ui R2(r2)— współczynnik determinacji; określa jaka część zmienności całko-witej SSTO została wyjaśniona przez równanie regresji 2 — współczynnik zbieżności (zgodności); określa jaka część zmien-ności całkowitej SSTO niezostała wyjaśniona przez równanie regresji

  15. Matematyczne techniki zarządzania - 105 Wszystko to jest łatwiejsze do zrozumienia w układzie dwuwymiarowym Y = SSTO(zmienność całkowita) = SSTR(zmienność wyjaśniona) = SSE(zmienność niewyjaśniona) (SUMOWANIE OD „1” DO „n” ) X SSTO = SSTR + SSE RÓWNANIE REGRESJI JEST MODELEM RZECZYWISTOŚCI WSZYSTKO TO JUŻ ZNAMY Z ANALIZY WARIANCJI

  16. Matematyczne techniki zarządzania - 106 Krzywe Neymana Y obserwacje (dane empiryczne) środek ciężkości próbki prosta regresji II rodzaju (dla próbki) krzywe wyznaczające pas ufnoś-ci, w którym z prawdopobieńst-wem 1- znajduje się nieznana prosta regresji I rodzaju (dla populacji) dlaczego taki kształt? (2 ruchy) krzywe wyznaczające przedziało- we prognozy wartości zmiennej Y dla danego xi X prognoza punktowa uzyskana przez wstawienie xi do równania • Przykłady: • waga — wzrost studentek • ocena egzaminu — zaliczenie • koszt produkcji — wielkość produkcji • utarg — wydatki na reklamę • prędkość — zużycie paliwa  gg,dg przedział, w którym z szansą 1- mieści się nieznana wartość yi dla i-tej nowej jednostki spoza próbki

  17. Matematyczne techniki zarządzania - 107 • Jak patrzeć na krzywe Neymana? • przypadek z poprzedniej planszy: niezależnie od tego, co się zdarzy, 0>0 i 1>0 (jak to rozumieć) • ale może być inna sytuacja • co wtedy wiemy o 0i 1? • NIC — mogą być >0, =0, <0; nie wyklu-czymy więc, że: • X nie wpływa na Y • prosta I rodzaju przechodzi przez (0,0) Te problemy można rozwiązać przez testowanie hipotez o ioraz o  Identyczne wnioski można wyciągnąć przy porównaniu dwu prostych II rodzaju mały rozrzut duży rozrzut obserwacji

  18. Matematyczne techniki zarządzania - 108 Regresja krzywoliniowa Kiedy występuje regresja liniowa? — gdy obie zmienne mają rozkład normalny! • W wielu przypadkach dane układają się w zależności nieliniowe: • gdy mają postać szeregu czasowego • gdy dane przekrojowe układają się w smugę nieliniową • gdy krzywoliniowa funkcja wielu zmiennych lepiej opisuje rzeczy-wistość niż funkcja liniowa (plansza 103); tego nie widać, która lepsza można poznać tylko po R2 (na przykład — efekt skali)

  19. Matematyczne techniki zarządzania - 109 Do opisu takich zjawisk stosujemy rozmaite funkcje krzywoliniowe: 1. proste funkcje (rosnące lub malejące) dwu zmiennych: wykładnicze, potęgowe itp. 2. wielomiany różnego stopnia (ich fragmenty) 3. funkcje bardziej złożone: krzywe nasycenia, krzywe logistyczne itp.. 4. funkcję potęgową wielu zmiennych ABY MOŻNA BYŁO STOSOWAĆ METODĘ NAJMNIEJ-SZYCH KWADRATÓW, FUNKCJE TE MUSZĄ BYĆ SPROWADZONE DO POSTACI LINIOWEJ 2. Wielomiany są funkcjami liniowymi pod wzglę-dem swych parametrów 3. Stosuje się „chwyty” (wielokrotne podstawianie)

  20. Matematyczne techniki zarządzania - 110 4. Także stosujemy transformację logarytmiczną • Kolejność czynności przy estymacji funkcji regresji krzywoliniowej: • 1. zebranie danych empirycznych • 2. dobranie modelu (funkcji nieliniowej) • 3. transformacja modelu do liniowego (logarytmowanie — transformata) • 4. przeliczenie danych na układ liniowy (robi to komputer) • 5. oszacowanie równania regresji liniowej • 6. retransformacja do postaci pierwotnej (odlogarytmowanie) • Retransformacji podlegają tylko parametry strukturalne, natomiast wszystkie parametry stochastyczne dotyczą tylko transformaty • Metody estymacji równania regresji • klasyczna metoda najmniejszych kwadratów (KMNK) w wielu wariantach obliczeniowych • podwójna MNK • regresje specjalne: grzbietowa (ridge regression), odporna (robust) itd. • metoda największej wiarygodności

  21. Matematyczne techniki zarządzania - 111 Klasyczna metoda najmniejszych kwadratów (KMNK) W książkach jest całe mnóstwo różnych wa-riantów, wersji, metod itd. — nie należy tra-cić głowy ani denerwować się!  PLANSZA 105 Wersja 1. Metoda równań normalnych Wyznaczamy pochodne cząstkowe względem a oraz b i przy-równujemy je do zera, po przekształceniu otrzymujemy uk-ład równań normalnych Niewiadome: a, b Współczynniki: z tabelki roboczej Z tego układu równań wywodzą się dziesiątki rozmaitych wzorów na obliczanie wartości a i b

  22. Matematyczne techniki zarządzania - 112 Na analogicznej regule można zbudować układ równań normalnych dla równania Wersja 2. Metoda „sigma prim” uzyskuje się uproszczone równania Wersja 3. Metoda mnożników Gaussa, posługuje się formularzami obliczeniowymi opartymi o wartości „sigma prim” (W. Volk, Statystyka dla inżynierów) Wersja 4. Metoda przekształceń Jordana Wersja 5. Metoda macierzowa XTX — współczynniki układu r. n. Xty — prawe strony układu r. n.

  23. Matematyczne techniki zarządzania - 113 na głównej przekątnej tej macierzy znajdują się wariancje s2(a0), s2(a1)... Wersja 5. Metoda uproszczona Hellwiga I Dzielimy zbiór na 2 podzbiory i wyzna-czamy ich środki ciężkości II po czym budujemy prostą przechodzącą przez te punkty • Praktyczne zastosowania analizy regresji i korelacji (przykłady): • wydajność pracy = f (liczby szkoleń i stażu) zysk z akcji = f (ceny i dywidendy) • cena = f (liczby asortymentów) czas demolki = f (ilości pracy i odległości) • zużycie prądu = f (pogody i produkcji) produkcja = f (kapitału i robocizny) • udział w rynku = f (ceny i liczby reklam) płaca = f (wieku, funkcji, stażu) • cena działki = f (obszaru i odległości od morza) sprzedaż biletów MPK = f(pogody, dnia • utarg = f (liczba klientów) tygodnia, liczby mieszkańców) • plon z ha = f (zużycie nawozów) • czas choroby = f (temperatury i liczby bakterii) • koszt reklamy = f (czasu) Zmienne 0-1: 3 — profesor 1 — profesor 2 — adiunkt 2 — nie-profesor 1 — asystent

  24. TROCHĘ GREKI I ŁACINY Matematyczne techniki zarządzania - 114 E K O N O M E T R I A • Probabilistyka — probabilis (prawdopodobny, d. godny pochwały) • Statystyka — status (stan, państwo); kto to jest lostatista we Włoszech? A kto la comparsa? • Ekonomia — oikos (dom, środowisko) + nomos (prawo, ustawa); oiko-nomos (pan domu); oikonomia —zarządzanie gospodarstwem domowym • Metr, -metria — metron (miara) • Ekonometria — nauka zajmująca się ustalaniem, za pomocą metod matematyczno-statystycznych, ilościowych prawidłowości zachodzących w życiu gospodarczym • Nastawienie bardziej na makroekonomię niż na mikroekonomię (ekonomikę przedsiębiorstwa i przemysłu) — sprawdzanie teorii ekonomicznych: • zależność eksportu krajowego od PKB, • zależność dochodu narodowego od ilości pieniądza w obiegu, • także na badanie poziomu życia ludności: • zależność wydatków na określone dobra od dochodów ludności, • zależność obrotu sklepów detalicznych od odległości od dużego miasta, • funkcje popytu i podaży

  25. Matematyczne techniki zarządzania - 115 • ale również na zagadnienia związane z zarządzaniem przedsiębiorstwem: • zależność wartości dodanej na roboczo-godzinę od stawki godzinowej i kapitałochłonności pracy, • funkcje produkcji opisujące zależność wielkości produkcji od majątku trwałego i robocizny. • Specyficzne warunki prowadzenia badań ekonometrycznych • brak możliwości powtórzenia eksperymentu (nie działają prawa statystyki matematycznej) • zaostrzone kryteria matematyczne (n>100) • trudności z danymi: dostępność, ilość, wiarygodność, porównywalność • NARZĘDZIEM BADAWCZYM EKONOMETRII JEST MODEL EKONOMETRYCZNY, KTÓRY MATEMATYCZNIE ODPOWIADA RÓWNANIU REGRESJI LUB KILKU RÓWNANIOM • Terminologia • zmienna objaśniana (Y) — zmienna egzogeniczna • zmienne objaśniające (X1, X2...) — zmienne endogeniczne • zmienne opóźnione w czasie: yt, yt-1, xt, xt-k; służą do analizy wpływu czasu

  26. Matematyczne techniki zarządzania - 116 • Klasyfikacja modeli ekonometrycznych • I. Klasyfikacja według wnoszonej informacji: • modele przyczynowo-skutkowe y — skutek Xi — przyczyny • Przykłady zmiennej Y: • średnia z indeksu studentów • zużycie energii elektrycznej w firmach • koszty produkcji różnych partii wyrobów Modele te budujemy z danych przekrojowych (różne obiekty w tym samym momencie) • modele tendencji rozwojowej • Przykłady zmiennej Y: • codzienne ceny cebuli • miesięczne zużycie prądu na WZ AGH • roczne zużycie gazu ziemnego w PL y — analizowane zjawisko t — czas Modele te budujemy z szeregów czasowych (ten sam obiekt w różnych momentach) • Analiza szeregów czasowych (time series analysis) — odrębny dział matematyki • interesuje nas jak zjawisko zmienia się w czasie, nie obchodzi nas co te zmiany wywołuje • efekt długoterminowy: trend (tendencja) • efekty krótkoterminowe: wahania okresowe, sezonowe, cykliczne Długość: doba,....,rok, 25 lat, 500 lat

  27. Matematyczne techniki zarządzania - 117 Przykład 31. Zinterpretuj wykres powstały z szeregu czasowego miesięczne-go zużycia energii elektrycznej przez WZ AGH 1995 1996 1997 1998 1999 • II. Klasyfikacja według stopnia uwzględniania czasu: • modele statyczne • modele dynamiczne • III. Klasyfikacja według powiązania równań: • modele proste • modele rekurencyjne • modele o równaniach współzależnych JEDNO RÓWNANIE LUB KILKA ODDZIELNYCH • IV. Klasyfikacja według liniowości: • modele liniowe • modele nieliniowe (konieczna transformacja liniowa)

  28. Matematyczne techniki zarządzania - 118 • ETAPY BUDOWY MODELU EKONOMETRYCZNEGO • 1. Sformułowanie modelu • a. wybór zmiennych: y, x1, x2,... • b. wybór postaci matematycznej modelu: liniowa, potęgowa,... • 2. Zebranie danych statystycznych (różne źródła) • 3. Selekcja zmiennych objaśniających (celem podziału na dwie grupy — nadające się do modelu i niepotrzebne w nim) • 4. Estymacja parametrów modelu: • a. parametrów strukturalnych: a0, a1, a2,... • b. parametrów stochastycznych: s(ai), s(y), R2, R • 5. Weryfikacja modelu (przy użyciu hipotez i testów statystycznych) • MODEL BEZ WERYFIKACJI NIE MA ŻADNEJ WARTOŚCI • NIE NALEŻY KORZYSTAĆ Z PROGRAMÓW KOMPUTEROWYCH NIE DAJĄCYCH MOŻLIWOŚCI WERYFIKACJI • 6. Interpretacja modelu • wyciągnięcie wniosków dla celów zarządzania • sprzedanie go klientowi

  29. Matematyczne techniki zarządzania - 119 • ETAP 1a. WYBÓR ZMIENNYCH • zmienna objaśniana Y: według zainteresowań (na ćwiczeniach), według polecenia szefa (w przedsiębiorstwie), według życzenia klienta (w firmie konsultingowej) • zmienne objaśniające Xi (jak najwięcej dla modelu przyczynowo-skutkowego) z następujących źródeł (w kolejności): • — teoria danej dziedziny wiedzy • — doświadczenie zleceniodawcy i statystyka • — metodą prób i błędów (intuicyjnie) • wybrane zmienne muszą mieć dużą zmienność (W>30%) • najczęstszy błąd — „masło maślane” prowadzące do związku funkcyjne-go i nie dające żadnej informacji o zmiennej objaśnianej • przykład modelu bez sensu: wynagrodzenie = f(płacy, premii i dodatku stażowego) • Co typujesz, gdy Y to: • wynik studiów • zysk firmy • ETAP 1b. WYBÓR POSTACI MATEMATYCZNEJ • modele przyczynowo-skutkowe —najbardziej zalecane jest równoczesne prowadzenie obliczeń dla dwu postaci: • — liniowej • — potęgowej

  30. Matematyczne techniki zarządzania - 120 • — stosuje się też modele nieliniowej o narzuconej postaci nieliniowej, których parametry ustala się przez programowanie liniowe lub innymi metodami • modele tendencji rozwojowej: • — funkcja liniowa • — proste funkcje nieliniowe • — wielomiany • — funkcje skomplikowane • — modele kombinowane: trend + wahania okresowe (t zamiast x) • są to zależności dla ln, dla układu y=f(x) mogą być dziwne (R2>1) • są to funkcje „sztywne”, „nieposłuszne • wielomian jest modelem liniowym! • można znaleźć optymalny stopień wielomianu (przez badanie którego rzędu wartości Δy są sobie mniej więcej równe) Efekt „krzywego lustra”

More Related