240 likes | 351 Views
DERIVING LAND USE AND CANOPY COVER FACTOR FROM REMOTE SENSING AND FIELD DATA IN INACCESSIBLE MOUNTAINOUS TERRAIN FOR USE IN SOIL EROSION MODELLING. M. Suriyaprasit and D.P. Shrestha. 許靖男. 大綱. 前言. 研究區域. 研究方法. 結果. 前言.
E N D
DERIVING LAND USE AND CANOPY COVER FACTOR FROM REMOTE SENSING AND FIELD DATA IN INACCESSIBLE MOUNTAINOUS TERRAIN FOR USE IN SOIL EROSION MODELLING M. Suriyaprasit and D.P. Shrestha 許靖男
大綱 前言 研究區域 研究方法 結果
前言 由於人口增加,使土地利用型態從森林改變成農業區,造成土壤物理性質有重大改變。例如:體積密度、土壤結構和有機質含量。這些都會對土壤水力特性和保水特性造成影響。造成土壤沖蝕增加。土壤沖蝕不僅會使農業生產率減少也會增加災害,例如:水庫泥沙淤積和低窪地區造成淹水。 了解侵蝕問題的嚴重性,防止土地退化和制定保護計畫是必要的。
前言 預測模式時,土地覆蓋/土地利用和樹冠覆蓋是關鍵數據。有效土壤水深和植株高度可由土地覆蓋獲得資訊,植生覆蓋會給予降雨逕流因子訊息,這兩者都是用來計算徑流和土壤流失的重要參數。但因為山區交通不便,使得這些數據不易取得。 在這種情況下,遙感探測就變得非常重要。但在遙測數據進行分類時,由於山區地形變化所引起的光照變化是需要考慮的問題,因為這可能會導致訓練樣本無法成常態分布,假設需要最大似然法。
前言 為了要消除遙測的限制,許多研究者採用不同技術去除光照變化,例如:利用強度正規化或利用太陽方位角和高度角的地形正規化。 最重要的是要評估這項技術的實用性,它可對於山區分類準確性有更好的結果。 常態化差異植生指標(NDVI)常被用來推導沖蝕模式中的覆蓋因子(C值),而轉換NDVI到C值可用線性最小二乘法或指數函數得到。
前言 在熱帶地區,雨水不僅會被樹冠覆蓋所攔截;也會被收成後的作物殘株和土壤表面覆蓋所影響。 因此直接轉換NDVI指標到C值,會因為沒有現地查定而無法代表實際情況。 本研究首先利用現地評估C值其次再利用NDVI進行計算,最後在進行曲線的擬和。
研究區域 本研究區域為距離泰國 曼谷北部約400公里處的 Petchabun省Nam Chun集 水區。在熱帶旱季和雨 季間氣候有明顯變化。 年降雨量為1075毫米; 年均溫為28度。
研究方法 田間覆蓋因子估計 在現地估算覆蓋管理因子(C)是利用先前土地利用次因子(PLU)、由樹冠覆蓋評估不同覆蓋類型(CC)、表面覆蓋(SC)和表面粗糙次因子(SR),依據(Renard et al., 1997)RUSLE解釋如下: (1) Cf:表示在一段時間中,標準田間土壤流失量與具特殊作物覆蓋厚之田間土壤流失量比值。 PLU:先前土地利用次因子(表示前作物的地表殘留物和先前耕作對土壤的壓密造成土壤沖蝕的影響。在研究區域中,森林地區以0.5表示;農業地區以1表示。)
研究方法 在RUSLE的覆蓋管理因子定義為:種植某作物的耕作之土壤流失量與相同降雨、土壤、地形與地勢之連續休耕地之土壤流失量比值。C值易受季節變化所影響,保持地表植生覆蓋及良好管理,必能容易的降低土壤流失。 樹冠覆蓋次因子: (2) CC:為樹冠覆蓋次因子 Fc:為樹冠覆蓋地表的比例 H:為植株高度
研究方法 表面覆蓋次因子: (3) SC:為表面覆蓋次因子 SP:為土壤表層覆蓋比率 Ru:為表面粗造度 b:為經驗係數 表面粗糙次因子: (4) SR:為表面粗糙次因子 Ru:為表面粗造度
研究方法 去除光照變化和土地利用分類 於2007年3月3號利用Landsat TM資料,數據取得自泰國曼谷土地發展部所得到的五米數值高程模型。 經空間參照後的衛星數據,利用兩種技術來去除地形所造成的結果,並確認分類準確性。 首先利用強度正規化 (5) Bi normal:為任何感應器單向正規化 Bi:為單向感應器 I:為波段數量(從1到N段)255:為補償係數
研究方法 接著利用太陽方位角和高度角結合高程進行地形的去除 (6) Bvnormal λ:為正規化亮度值 Bvobserved λ:為觀察的亮度值 Cos i:為入射角之餘弦函數 Cos e:為斜率角 K:為經驗導出之常數(通常可由亮度迴歸分析所得) 經由地形校正後,將訓練樣本經由最大似然分類法進行分類。再用測試樣本評估分類結果準確性。
研究方法 樹冠覆蓋因子估算 樹冠覆蓋因子常用常態化差異植生指標(NDVI)利用近紅外光輻射值(NIR)及紅光輻射值(R)來求得。 其公式如下: (7) NDVI之值通常介於-1~1之間,小於零的值,通常屬於非植生之雲層、水域、道路及建築物,因此當指標值愈大時,代表綠色生物量之增加。而NDVI為綠色植物探勘最常用之指標,因此綠色植物生長愈旺盛,其吸收之紅光愈多,紅光反射愈強,期間之差距也愈大。
研究方法 樹冠覆蓋因子估算 為了要換算NDVI指標成為樹冠覆蓋值,採用田間138比樣本之C值作為對照,並繪製對照NDVI值。 其中方程式為: (8)
研究方法 透過回歸成效及殘差比較獲得個經驗公式可性度,回歸成效以R2進行比較,以哪一植生指標為最高(R2達0.78);殘差比較方面,比較各均方根相對誤差,結果亦以哪一植生指標得均方根相對誤差最小。 NDVI和C值之關係
研究方法 而所產生的C值其評估的可靠性可從NDVI與田野調查所收集的資料作為預測。為了達到這個目的,運用效率係數(C.E.)和均方根相對誤差(RMSE)作為驗證,其公式如下: (9) Xvali:為C值驗證值 :為C值平均值 Xpi:為預測值 當C.E.值愈趨近於1時,表示預測結果與實際愈密合,結果也愈好。
研究方法 同樣地,RMSE計算如下: (10) Xpi:為預測值 Xvali:為C值驗證值 N:為預測個數
結果 利用最大似然法對該地區的土地利用/覆蓋分類進行三種分類:地形正規化技術、強度正規化和校正地形影響。並將土地利用分類成森林、退化林、草原、農業區和果園五種。 土地利用分類圖
結果 Nam Chun集水區土地利用分類
結果 關聯表
結果 由此表可看出在沒有光照校正的準確性為67% ;而利用地形正規化準確性高達74% 分類準確性
結果 覆蓋因子由公式8所得到,其結果如右圖。
結果 本研究利用田間125筆驗證數據來評估準確性。其驗證結果:效率係數(C.E.)為0.77(愈趨近於1表示預測愈佳) ;均方根相對誤差相對也較低。 結果顯示,利用正規化技術在衛星數據上做光照變化可改善山區土地利用分類。 在無法獲得數值高程數據的情況下,光照變化可以利用強度正規化得到校正。 其結果還顯示,利用田間估計和NDVI間之關聯所得到C值最佳。