1 / 6

Posição relativa entre duas circunferências

Posição relativa entre duas circunferências. Secante Tangente Distintas (sem pontos comuns). 5. 5. 5. -. λ 1 : x 2 + y 2 = 30 λ 2 : (x – 3) 2 + y 2 = 9. =>. y 2 = 30 – x 2. (x – 3) 2 + (30 – x 2 ) = 9 (x 2 – 6x + 9) + (30 – x 2 ) – 9 = 0 6x + 30 = 0 30 = 6x x = 5.

clove
Download Presentation

Posição relativa entre duas circunferências

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Posição relativa entre duas circunferências Secante Tangente Distintas (sem pontos comuns)

  2. 5 5 5 - • λ1: x2 + y2 = 30 • λ2: (x – 3)2 + y2 = 9 => y2 = 30 – x2 • (x – 3)2 + (30 – x2) = 9 • (x2 – 6x + 9) + (30 – x2) – 9 = 0 • 6x + 30 = 0 • 30 = 6x • x = 5 Substituindo x = 5 x2 + y2 = 30 (5)2 + y2 = 30 25 + y2 = 30 y2 = 30 – 25 y = • ± 5 Secantes •

  3. • C1 C2 dC1,C2 r1 + r2 ≠ Substituindo x = 11 x2 + y2 – 2x – 2y – 98 = 0 (11)2 + y2 – 2(11) – 2y – 98 = 0 y2 – 2y + 1 = 0 - 2) λ1: x2 + y2 – 20x – 2y + 100 = 0 λ2: x2 + y2 – 2x – 2y – 98 = 0 • 18x + 198 = 0 • 198 = 18x • x = 198/18 • x = 11 Δ = b2 – 4ac Δ = 0 y = 1 r1 r2 1 1 • • 11 11 Tangente externa Tangente Tangente interna dC1,C2 r1 + r2 =

  4. 2) λ1: x2 + y2 = 1 λ2: (x + 2)2 + (y – 2)2 = 1 r1 • C1 • C2 r2 x2 + y2 = (x + 2)2 + (y – 2)2 x2 + y2 = (x2 + 4x + 4) + (y2 – 4y + 4) x2 + y2 - x2 - 4x - 4 - y2 + 4y - 4 = 0 - 4x + 4y - 8 = 0 Interna __ __ __ __ 4 4 4 4 -x + y - 2 = 0 y = x + 2 d c1,c2 r1 + r2 < ? r2 Distintas (nenhum ponto comum) • C2 r1 • C1 Externas • C1 = C2 d c1,c2 r1 + r2 > Concêntrica

  5. Página 572exercícios 25 até 28

  6. 25) Dadas as circunferências, descubra suas posições relativas e seus pontos comuns (se houver): 1) λ1: x2 + y2 – 4x – 8y – 5 = 0 λ2: x2 + y2 – 2x – 6y + 1 = 0 2) λ1:(x – 2)2 + (y – 1)2 = 4 λ2: (x – 2)2 + (y + 2)2 = 1

More Related