120 likes | 238 Views
Multi-wires Removal and Rectification Using Interpolant. Speaker: Guo-Jhu Hunag Advisor: Chun-Yao Wang 2009/11/20. Outline. Problem Formulation How Interpolant Construct R ectified Network for Single Wire. Problem Formulation.
E N D
Multi-wires Removal and Rectification Using Interpolant Speaker: Guo-JhuHunag Advisor: Chun-Yao Wang 2009/11/20
Outline • Problem Formulation • How Interpolant Construct Rectified Network for Single Wire
Problem Formulation • Given a circuit, we want to remove many wires simultaneously and rectify the functionality.
MA to Boolean manipulation wt wt s-a-1 fault The fault activation –fwt(X) is the set of minterms to cause the different value at f between good circuit and bad circuit The fault propagation –ODCwt(X) is the set of minterms to propagate the different value to PO
MA to Boolean manipulation wt wt s-a-1 fault MA(wt) = –fwt(X) –ODCwt(X)
Rectified Network Using Two-way RAR method • Two-way(one-stage) RAR method • MA(wt) -> <g,v> • MA(gd) -> <g,-v>
wt gt gd gs MA(wt)= -fgt(X)-ODCgt(X) MA(gd)= fgd(X)-ODCgd(X) = fgt(X)-ODCgt(X)
Rectified Network Using Interpolant • Interpolant • MA(wt) -> <g,0> • MA(gd) -> <g,1> • -fgt(X)-ODCgt(X) -g(X) • fgt(X)-ODCgt(X) g(X) wt gt gd gs
Example wt a g1 gd b c g4 a g3 d -g1(X) -ODCg1(X) = { a’b’cx, a’b’cd’} g1(X) -ODCg1(X) = { axcd’, a’bcx, xbcd’ } -g1(X) = -(a+b) ={ a’b’xx } g1(X) = (a+b) = { axxx, xbxx } -ODCg1(X) = { a’xcx, xxcd’ }
Example -g1(X) -ODCg1(X) = { a’b’cx, a’b’cd’} -g(X) g1(X) -ODCg1(X) = { axcd’, a’xcx, bxcd’ } g(X) K-map of g(X)
Example a b a g1 gd b c g4 a g3 d a+b
IRRA Example a b a g1 gd b c g4 a g3 d