1 / 9

Pertemuan 2 dan 3 Alokasi Waktu : 6 x 50 menit

Pertemuan 2 dan 3 Alokasi Waktu : 6 x 50 menit. POKOK MATERI 1.2 HASIL KALI KHUSUS. HASIL KALI KHUSUS. a(c + d) = ac + ad (a – b)(a + b) = a 2 - b 2 (a + b)(a + b) = ( a + b) 2 = a 2 + 2ab + b 2 (a - b)(a - b) = ( a - b) 2 = a 2 - 2ab + b 2

cyrus-tyson
Download Presentation

Pertemuan 2 dan 3 Alokasi Waktu : 6 x 50 menit

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Pertemuan 2 dan 3AlokasiWaktu: 6 x 50 menit POKOK MATERI 1.2 HASIL KALI KHUSUS Matematika Terapan 1 Modul 1 Aljabar by Ketut Darma Teknik Mesin Politeknik Negeri Bali

  2. HASIL KALI KHUSUS a(c + d) = ac + ad (a – b)(a + b) = a2 - b2 (a + b)(a + b) = ( a + b)2 = a2 + 2ab + b2 (a - b)(a - b) = ( a - b)2 = a2 - 2ab + b2 (x + a)(x + b) = x2 + (a+b)x + ab (ax + b)(cx + d) = acx2 + ( ad + bc)x + bd (a + b)(c + d) = ac + bc + ad + bd (a + b) (a + b) (a + b) = (a + b)3 = a3 + 3a2b + 3ab2 + b3 (a - b) (a - b) (a - b) = (a - b)3 = a3 - 3a2b + 3ab2 - b3 ( a - b )( a2 + ab + b2) = a3 – b3 ( a + b )( a2 - ab + b2 = a3 + b3 (a + b + c)2 = a2 + b2 + c2 + 2ab + 2 ac + 2 bc Matematika Terapan 1 Modul 1 Aljabar by Ketut Darma Teknik Mesin Politeknik Negeri Bali

  3. Bentuk – bentuk berikut dapat dibuktikan dengan perkalian (a – b)(a2 + ab + b2) = a3 – b3 (a – b )(a3 + a2 b + ab2 + b3 ) = a4 – b4 (a – b )(a4 + a3 b + a2b2 + ab3 + b4 ) = a5 – b5 (a – b )(a5 + a4 b + a3b2 + a2b3 + ab4 + b5 ) = a6 – b6 Dan seterusnya dan dapat dibuat secara umum: (a – b )(an-1 + an-2 b + an-3b2 + ..............+ abn - 2 + b n - 1 ) = a n – bn (14) n adalah sembarang bilangan positif ( 1, 2, 3, ..........) Dengan cara yang sama didapatkan: (a + b )(an-1 - an-2 b + an-3b2 - ..............- abn - 2 + b n - 1 ) = a n + bn ... (15) n adalah sembarang bilangan ganjil( 1, 3, 5, 7, ..........) Matematika Terapan 1 Modul 1 Aljabar by Ketut Darma Teknik Mesin Politeknik Negeri Bali

  4. Untuk faktor (a+b) dan n ganjil (a + b)(a2 - ab + b2) = a3 + b3 (a + b )(a4 - a3 b + a2b2 - ab3 + b4 ) = a5 + b5 (a + b )(a6 – a5 b + a4b2 – a3b3 + a2 b4 – a b5 + b6 ) = a7+ b7 dan seterusnya dan dapat dibuat secara umum: (a + b )(an-1 - an-2 b + an-3b2 - ..............- abn - 2 + b n - 1 ) = a n + bn ............. (15) n adalah sembarang bilangan ganjil( 1, 3, 5, 7, ..........) Matematika Terapan 1 Modul 1 Aljabar by Ketut Darma Teknik Mesin Politeknik Negeri Bali

  5. Contoh 1 (3x +5y)2 = (3x)2 + 2(3x)(5y) + (5y)2 = 9x2 + 30 xy + 25y2 (sifat 3) 2 (7x2 - 2xy)2 = (7x2)2 – 2 (7x2)( 2xy) + (2xy)2 = 49x2 – 28 x3y + 4x2y2 (sifat 4) 3 (x + y + 3)(x + y - 3) = (x + y)2 – 32 = x2 + 2xy + y2 -9 (2x – y – 1)(2x – y + 1) = (2x – y )2 – 12 = 4x2 – 4xy + y2 – 1 4 5 ( xy – 2)3 = (xy)3 – 3(xy)2.2 + 3 xy. 22 - 23 = x3y3 – 6x2y2 + 12 xy – 8 6 (x – 1)( x2 + x + 1) = x3 -1 (2x + 3y + z)2 = (2x)2 + (3y)2 + z2 + 2 (2x)(3y) + 2 ( 2x)z + 2(3y).z = 4x2 + 9y2 + z2 + 12 xy + 4 xz + 6 yz 7 Matematika Terapan 1 Modul 1 Aljabar by Ketut Darma Teknik Mesin Politeknik Negeri Bali

  6. 8 ( x + y + z + 1)2 = [(x + y) + ( z + 1)]2 = (x + y)2 + 2(x + y) ( z + 1) + ( z + 1)2 = x2 + 2xy + y2 + 2(xz + x + yz + y) + z2 + 2z + 1 = x2 + 2xy + y2 + 2xz + 2x + 2yz + 2y + z2 + 2z + 1 9 (u – v)3 (u + v)3 = = {(u – v)(u + v)}3 = ( u2 – v2)3 = (u2)3 - 3 (u2)2 v2+ 3 u2(v2)2 –(v2)3 = u6 – 3 u4v2 + 3u2v4 – v6 10 (x2 – x + 1)2( x2 + x + 1)2 =…. = {(x2 – x + 1)( x2 + x + 1)}2 = {(x2 + 1– x)( x2 + 1+ x)}2 = {(x2 + 1)2– x2)} 2 = (x4 + 2x2 + 1 – x2)2 = ( x4 + x2 + 1)2 = (x4)2 +( x2)2 + 12 + 2 x6 + 2x4 + 2x2 (x2 – x + 1)2( x2 + x + 1)2 = x8 + 2x6 + 3x4 + 2x2 +1 Matematika Terapan 1 Modul 1 Aljabar by Ketut Darma Teknik Mesin Politeknik Negeri Bali

  7. Soal Latihan 1 I. Carilah tiap – tiap hasil kali berikut (5xy + 4)(5xy – 4) ( 3 – 2x2)2 (xy + 6)(xy - 4 ) (2t2 + s)(3t2 + 4s) (x2 + 4y)(2x2 y – y) (r + s – 1)( r + s +1) (x – 2y +z)(x - 2y – z) (ab2 – 2b)3 (t – 2)(t2 + 2t + 4) (s – 1)(s3 + s2 + s + 1) (1 + t2)(1 - t2 + t4 – t6) (3x + 2y)2(3x – 2y)2 (x2+ 2x +1)2(x2 - 2x + 1)2 (y -1)3(y + 1)3 (u + 2)(u – 2)(u2 + 4)(u4 + 16) Matematika Terapan 1 Modul 1 Aljabar by Ketut Darma Teknik Mesin Politeknik Negeri Bali

  8. II. Faktorkanlah Bentuk Berikut 3x2y4 + 6x3y3 = 12s2t2 – 6s5t4 + 4s4t = 4y2 – 100 = x2y2 – 8xy +16 = 4x3y + 12x2y2 + 9xy3 = y3 + 27 = x3y3 – 8 = 8x4y – 64xy4 = Matematika Terapan 1 Modul 1 Aljabar by Ketut Darma Teknik Mesin Politeknik Negeri Bali

  9. III. Sederhanakanlah Pecahan Berikut 1 5 2 6 3 7 4 Matematika Terapan 1 Modul 1 Aljabar by Ketut Darma Teknik Mesin Politeknik Negeri Bali

More Related