1 / 16

VOLUMEN Y SUPERFICIE DE FIGURAS EN EL ESPACIO

VOLUMEN Y SUPERFICIE DE FIGURAS EN EL ESPACIO. Conceptos primitivos en el espacio geométrico. Ángulos diedros

dalila
Download Presentation

VOLUMEN Y SUPERFICIE DE FIGURAS EN EL ESPACIO

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. VOLUMEN Y SUPERFICIE DE FIGURAS EN EL ESPACIO

  2. Conceptos primitivos en el espacio geométrico • Ángulos diedros Se llama ángulo diedro a la abertura comprendida entre dos planos que se cortan. Los planos que forman los diedros se llaman caras. El ángulo diedro se designa por dos letras de la arista, o bien por cuatro letras: dos de la arista y una de cada cara (figura 1). Todo ángulo diedro se mide por medio de su ángulo rectilíneo, el cual está formado por las perpendiculares a la arista en un punto cualquiera de ella y situadas en cada plano del diedro (figura 2).

  3. Posiciones relativas entre dos planos. • planos paralelos: Son aquellos que no tienen punto en común alguno • planos que se cortan: Son aquellos que tienen infinitos puntos comunes situados en línea recta, llamada ésta, intersección entre los planos

  4. Planos perpendiculares: Son aquellos que forman un diedro recto. El ∡ BAC es el ángulo rectilíneo y, por lo tanto, PQ cuando ∡ BAC = 90 .

  5. Coordenadas cartesianas en el espacio. • Para ubicar un punto en el espacio, se construye un sistema de coordenadas en tres dimensiones. Desde un origen O se trazan tres rectas perpendiculares entre sí, llamadas ejes X, YyZ. En cada uno de ellos fijamos una unidad de longitud y un sentido positivo indicado por una flecha. Para dibujar un punto P de coordenadas (a, b, c) en el espacio, ubicamos primero el punto (a, b) en el plano horizontal XY y a continuación colocamos sobre él el punto a una altura c según el eje Z

  6. CLASIFICACION DE CUERPOS GEOMETRICOS

  7. CLASIFICACION DE CUERPOS GEOMETRICOS

  8. Hexaedro regular o cubo. • Es el poliedro que está limitado por seis cuadrados congruentes. • tiene 6 caras que son cuadrados congruentes; cualquiera de las caras sirve de base • tiene 12 aristas iguales entre sí • tiene 8 vértices • tiene 4 diagonales iguales entre sí que se cortan en un mismo punto • todos los ángulos diedros del cubo son iguales. • Diagonal del cubo: La medida de la diagonal del cubo se obtiene al multiplicar la arista por raíz de 3. • Superficie total del cubo: La superficie de cada cara del cubo es a2 por ser un cuadrado y, como el cubo consta de 6 caras, la superficie total es 6a2. • Volumen del cubo: El volumen de un cubo de arista a es igual al cubo de la arista, es decir, a3.

  9. Paralelepípedo rectangular recto • Es aquel cuerpo cuya base es un cuadrado o un rectángulo y las aristas laterales son perpendiculares a la base. Diagonal: Superficie del paralelepípedo: Corresponde a la suma de las áreas de los 6 rectángulos que lo limitan. • Volumen del paralelepípedo: Es igual al producto de sus tres dimensiones

  10. Prisma recto de base triangular • Es aquel cuyas bases son triángulos congruentes y sus caras laterales son paralelogramos. Superficie lateral: Es igual al producto del perímetro basal por la arista lateral. • Superficie total del prisma: La superficie total es igual a la suma del área lateral y el doble de la superficie basal. • Volumen del prisma: Es igual al producto de su área basal por la altura o arista lateral.

  11. Pirámide • Es el cuerpo determinado al cortar por un plano todas las aristas de un ángulo poliédrico. • Tetraedro regular: Es la pirámide que está limitada por 4 triángulos congruentes entre sí. • Superficie total del tetraedro: Es igual al producto del cuadrado de su arista por la constante Volumen del tetraedro regular: Es igual a la doceava parte del cubo de su arista por la constante

  12. Cilindro recto. • El cilindro recto es la figura engendrada por el giro de un rectángulo en torno de uno de sus lados • Superficie lateral: Se obtiene multiplicando la longitud de la base por su generatriz (altura del cilindro recto). Alat= 2r∙h • Superficie total del cilindro: Es igual a la suma del área lateral y el área de las bases. • Volumen del cilindro: Es igual al producto de su área basal por la altura.  V = r2 · h

  13. Cono recto • Se puede considerar como engendrado por el giro de un triángulo rectángulo en torno a uno de sus catetos. • Superficie del manto: Corresponde al producto del semiperímetro de la circunferencia basal por la generatriz. Alat = r · g • Superficie total: Es igual a la suma del área del manto cónico y el área basal. • Volumen: Es igual a un tercio del producto de su área basal por su altura

  14. La esfera • La esfera es el sólido engendrado por la revolución completa de un círculo alrededor de su diámetro. • Superficie de la esfera: Es igual a 4 veces el área del círculo máximo. AT = 4r2 • Volumen de la esfera: Es igual a un tercio del producto del área de la esfera por el radio.

  15. Ahora te toca a ti 1) El área lateral de un paralelepípedo rectangular es de 64 cm² y su área total es de 94 cm². Hallar las tres dimensiones del paralelepípedo, sabiendo que su volumen es de 60 cm³. 2) Calcular el área total y el volumen de un prisma recto de 20 cm de altura, cuya base es un triángulo equilátero de lado 4 cm. 3)  Calcular la superficie y el volumen de una esfera de 9 cm de radio. 4) Representa en el espacio los siguientes puntos: A(3, 4, 0) B(3, 4, 1) C(3, 4, -1)

  16. 6) Determinar el valor de la arista de un tetraedro regular para que su área y su volumen sean numéricamente iguales. 7) Calcular el área lateral, el área total y el volumen de un cilindro cuyo radio basal mide 3 cm y cuya generatriz mide 7 cm.  8) Calcular el área lateral y el volumen de un cilindro generado por la rotación de un rectángulo cuyos lados miden 8 cm y 5 cm, respectivamente. a) si se gira en torno al lado mayor. b) si se gira en torno al lado menor. 9) Calcular el área total y el volumen engendrado por la rotación de un triángulo rectángulo en torno a uno de los catetos si éstos miden 6 cm y 8 cm, respectivamente.

More Related