1 / 6

Modélisation des problèmes complexes et Optimisation

Université de Sfax, FSEG M2R ROGP M1R Ingénierie de l’Optimisation et de l’Aide à la Décision. Modélisation des problèmes complexes et Optimisation. R acem MELLOULI Docteur en Optimisation et Sûreté des Systèmes - UTT Ingénieur en Génie Industriel (informatique décisionnelle) - ENIT

damita
Download Presentation

Modélisation des problèmes complexes et Optimisation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Université de Sfax, FSEG M2R ROGP M1R Ingénierie de l’Optimisation et de l’Aide à la Décision Modélisation des problèmes complexes et Optimisation Racem MELLOULI Docteur en Optimisation et Sûreté des Systèmes - UTT Ingénieur en Génie Industriel (informatique décisionnelle) - ENIT Maître assistant, ESC Sfax, Tunisie Département des méthodes quantitatives et d’informatique GIAD – Unité de Recherche « Gestion industrielle et Aide à la décision » – Sfax, Tunisie www.racem.mallouli.com, racem.mellouli@yahoo.fr

  2. Plan du cours Ch1 – Optimisation et notions élémentaires de modélisation (PL) 7 à 8h Ch2 – Techniques avancées de modélisation Optimisation dans les graphes et problèmes classiques de la RO (3 à 4h) Introduction : pb de sac à dos, cas Prod12, cas Trans, Optimisation dans les graphes (modèle de transport, Modèle d'affectation, recherche de plus courts (longs) chemins, problèmes de flots, TSP) Pour votre culture : implémentation des modèles (exemples d’outils logiciels). Modélisation avec des variables binaires (3 à 4h) Variables indicatrices, variables auxiliaires Modélisation d'assertions logiques et conditionnelles Set covering, set partioning, set packing. Techniques de réduction (prétraitements) (2 à 3h): Redondance et réduction du modèle, fixation de variables, resserrement des bornes, etc. 9 à 10h Ch3 – PLNE et méthode Branch & Bound Procédure par séparation et évaluation, relaxation et calcul de bornes PSE pour un PLNE 2 à 3h Modélisation et Optimisation

  3. Ch4 – Programmation dynamique Problème de sac à dos Problème du plus court chemin* 2 à 3h Ch5 – Propagation de contraintes Problème de satisfaction de contraintes Formulation et résolution 2 à 3h Ch6 – Programmation multiobjectif Formulation et résolution Front de Pareto et optimisation bi-objectif 2 à 3h Ch7 – Applications Travaux dirigés Modélisation des problèmes d’ordonnancement. Mini-projets* 4 à 5h Plan du cours Modélisation et Optimisation Programme ROGP (20 à 23h) (suite) Programme IOAD (30h)

  4. Université de Sfax, FSEG M2R ROGP M1R Ingénierie de l’Optimisation et de l’Aide à la Décision Programmation mathématique avancée Racem MELLOULI Docteur en Optimisation et Sûreté des Systèmes - UTT Ingénieur en Génie Industriel (informatique décisionnelle) - ENIT Maître assistant, ESC Sfax, Tunisie Département des méthodes quantitatives et d’informatique GIAD – Unité de Recherche « Gestion industrielle et Aide à la décision » – Sfax, Tunisie www.racem.mallouli.com, racem.mellouli@yahoo.fr

  5. Partie I : Méthodes pour la Programmation Linéaire Ch1 – Relaxation Lagrangienne Introduction : méthodes de relaxation Relaxation Lagrangienne Algorithme du sous-gradient et calcul des coefficients de Lagrange Ch2 – Méthode de décomposition et génération de colonnes Décomposition de Dantzig-Wolf Décomposition de Bender Génération de colonnes et Branch & Price Ch3 – Méthodes de coupe Méthode des plans de coupe, coupe de Gomory Branch & Cut Plan du cours Programmation mathématique avancée Programme IOAD (30h)

  6. Partie II : Méthodes pour la Programmation Non Linéaire Ch4 – Programmation non linéaire sans contrainte L'algorithme Quasi-Newton L'algorithme Nelder-Mead (ou downhill simplex) L'algorithme zone de confiance Ch5 – Programmation non linéaire avec contraintes L'algorithme du point intérieur L'algorithme SQP L'algorithme ensemble actif L'algorithme réflexif de zone de confiance Plan du cours Programmation mathématique avancée

More Related