1 / 18

Drift Time Spectrometer for Heaviest Elements

Drift Time Spectrometer for Heaviest Elements. Mustapha Laatiaoui. Ludwig-Maximilians-Universität München. March 2006. Drift Time Spectrometer for Heaviest Elements. Overview:. Motivation Atom physics : Relativistic Effects Valence Electron Configuration Element Identification

egil
Download Presentation

Drift Time Spectrometer for Heaviest Elements

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Drift Time Spectrometer for Heaviest Elements Mustapha Laatiaoui Ludwig-Maximilians-Universität München March 2006

  2. Drift Time Spectrometer for Heaviest Elements Overview: • Motivation • Atom physics :Relativistic Effects • Valence Electron Configuration • Element Identification • Experiments • Drift time measurements on actinides • Atoms and Molecules • Concept for an Online-Spectrometer • Prospects Mustapha Laatiaoui Ludwig-Maximilians-Universität München March 2006

  3. 35 36 Br Kr 48 49 50 51 52 53 54 I Cd In Sn Sb Te Xe 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 87 88 89 104 105 106 107 Fr Ra Ac Rf Du Sg 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Periodic Table of Elements 1 2 H He 7 3 4 5 6 8 9 10 Li Be B C N 0 F Ne 11 12 13 14 15 16 17 16 Na Mg Al Si P S Cl Ar 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se 37 38 39 40 41 42 43 44 45 46 47 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag 108 109 110 111 112 113 114 115 116 117 118 Bh Hs Mt Ds 7s 7s 6d 6d 6d 6d 6d 6d … 2 2 3 4 5 6 1 Lanthanides (4f) Actinides (5f) 94 90 91 92 93 95 96 97 98 99 100 101 102 103 Pu Th Pa U Np Am Cm Bk Cf Es Fm Md No Lr 6d 5f 6d 5f 6d 5f 6d 5f 6d 5f 5f 5f 6d 5f 5f 5f 5f 5f 5f

  4. Relativistic Contraction a.u. a.u. V. Burke et al., Proc. Phys. Soc. London, 90, 297 (1967) For hydrogene-like mercury (Hg) with Z=80: 

  5. Relativistic Contraction J.P. Desclaux, At. Data Nucl. Data Tables 12, 311 (1973) rmax : Principal Maximum of the Wave Function of the Outermost Orbital P. Pyykkö, Phys. Scr. 20, 647 (1979)

  6. Shift of Electronic Energy Levels { E [eV] For Uranium (Z=92)

  7. Valence Electron Configuration & Element Identification 3d 4d 4f 5f Cs Fr Rb K o o Na Li rmax : Principal Maximum of the Wave Function of the Outermost Orbit o J.P. Desclaux At. Data Nucl. Data Tables 12, 311 (1973)

  8. Ion Mobility Spectrometry Intensity arb. units 1.0 1.4 1.8 P.R. Kemper and M.T. Bowers J. Am. Chem. Soc. 112, 3231 (1990) mCo+ : 3d74s1, 3F Co+: 3d8, 3F T [10-4 s] Mc Daniel et al. 1970

  9. Ionic Radii from Drift Time e: Charge N: Number Density of Buffer Gas Atoms m: Reduced Mass kB: Boltzmann Constant Teff: Effective Temperature : Collision Cross Section a: Higher Order Corrections rion . d . rAr K: Ion Mobility E: Electric Field Strength s: Ion path tdrift: drift time In Rigid Sphere Model : Relative Measurements :

  10. Experimental Setup Buffer Gas Cell Channeltron Buffer Gas Cell Laser Beam TMP 330 l/s 4x10-6mbar 255Fm Filament 5x10-7mbar 1x10-2mbar 2x10-4mbar TMP 700 l/s TMP 230 l/s TMP 360 l/s QPIG QMS 0 5 10 cm Optical Fiber LPM

  11. Laser Beams The used Buffer Gas Cell 220 V 70 V 20 V + 188 V + 200 V ° A 0 40 z [mm] Computer Simulation SIMION 7 For absolute Measurements!

  12. Measurements PHD Thesis, Achim Dretzke, Mainz

  13. Measurements + T FmD= 0.89(1) ms + T CfD = 0.91(1) ms + T UOD= 1.09(1) ms Ab Initio Theorie : J.P. Desclaux

  14. Quadrupole Triplet Dipole Magnets Quadrupole Triplet 254No Beam Target Wheel Buffer Gas Cell Beam Dump Condenser Plates for Electric Field Objectives: No (Z=102) to Db (Z=105) Z=102:208Pb (48Ca,2n) 254No (t1/2=55 s) 5 Ions/s Z=103:209Bi (48Ca,2n) 255Lr (t1/2=21.5 s) SHIP @ GSI

  15. + + Development of an On Line Spectrometer Trigger Drift Time Cell (100 mbar Ar Buffer Gas) Electric Field ( 50 V/cm) Channeltron + 1.5 kV 254No Ion Beam QMS Ion Guide e- HI+ Dynode Foils - 1.5 kV a_Detector Wheel 30 cm Fixed a_Detectors QMS : 40 u QMS : 254 u Direct Measurement of TbD DTa,bD=TaD-TbD Counts 39 40 TD [ms]

  16. Prospects: a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a Fm 242 0,8 ms Fm 243 0,18 s Fm 244 3,0 ms Fm 245 4,2 s Fm 246 1,1 s Fm 247 9,2 s | 35 s Fm 248 36 s Fm 249 2,6 m Fm 250 1,8 s | 39 m Fm 251 5,3 h Fm 252 25,4 h Fm 253 3,0 d Fm 254 3,24 h Fm 255 20,1 h Fm 256 2,63 h Fm 257 100,5 d Fm 258 0,38 ms Fm 259 1,5 s Fm Es 243 21 s Es 244 37 s Es 245 1,3 m Es 246 7,7 m Es 247 4,7 m Es 248 28 m Es 249 1,70 h Es 250 2,22 h | 8,6 h Es 251 33 h Es 252 471,7 d Es 253 20,4 d Es 254 39,3 h | 275,7 d Es 255 39,8 d Es 256 7,6 h | 22 m Es 118 294 1,8 ms 118 116 290 15 ms 116 291 6,3 ms 116 292 18 ms 116 7p 115 287 32 ms 115 288 125 ms 115 Heavy Ion Induced Nuclear Fusion Reactions 114 286 0,16 s 114 287 0,51 s 114 288 0,8 s 114 289 2,6 s 114 290 21 s 114 113 278 0,34 ms 113 283 0,10 s 113 284 0,69 s 113 112 277 1,5 ms 112 282 0,50 ms 112 283 4,0 s 112 284 97 ms 112 285 29 s 112 286 11 m 112 Rg 272 1,5 ms Rg 274 9,26 ms Rg 279 0,17 s Rg 280 5,2 s Rg 111 Ds 269 0,17 ms Ds 270 0,1 ms| 6,0 ms Ds 271 1,1 ms| 56 ms Ds 273 0,076 |118 ms| ms Ds 279 0,18 s Ds 281 11,1 s Ds 282 1,1 m Ds 110 Mt 266 3,4 ms Mt 268 70 ms Mt 270 7,16 ms Mt 275 9,7 ms Mt 276 1,03 s Mt 109 6d Hs 264 0,45 ms Hs 265 0,8 ms| 1,7 ms Hs 266 2,3 ms Hs 267 33 ms Hs 269 9,3 s Hs 270 2,4 s Hs 275 11,8 ms Hs 277 16,5 m Hs 278 11 m Hs 108 Bh 261 11,8 ms Bh 262 8,0 ms| 102 ms Bh 264 440 ms Bh 265 940 ms Bh 266 1 s? Bh 267 17 s Bh 272 14,14 s Bh 107 Sg 258 2,9 ms Sg 259 0,48 s Sg 260 3,6 ms Sg 261 0,23 s Sg 262 6,9 ms Sg 263 0,3 s| 0,9 s Sg 265 7,1 s Sg 266 34 s Sg 271 29,14 s Sg 106 Db 256 2,6 s Db 257 1,3 s Db 258 4,4 s Db 259 0,5 s Db 260 1,5 s Db 261 1,8 s Db 262 34 s Db 263 27 s Db 267 73 m Db 268 23,1 h Db 105 Rf 268 Rf 253 48 s Rf 254 22 s Rf 255 1,4 s Rf 256 6,7 ms Rf 257 4,7 s Rf 258 12 ms Rf 259 3,1 s Rf 260 21 ms Rf 261 65 s Rf 262 47 ms| 1,2 s Rf 263 15 m Rf 267 2,3 h Rf 104 Lr 252 0,4 s Lr 253 1,5 s| 0,6 s Lr 254 16 s Lr 255 21,5 s Lr 256 25,9 s Lr 257 0,66 s Lr 258 4,35 s Lr 259 5,4 s Lr 260 3 m Lr 261 39 m Lr 262 3,6 h Lr 103 162 Actinides No 250 0,25 ms No 251 0,8 s No 252 2,39 s No 253 1,7 m No 254 0,28 s| 55 s No 255 3,1 m No 256 3,1 s No 257 26 s No 258 1,2 ms No 259 58 m No 260 106 ms No 262 5 ms No 102 Md 247 2,9 s Md 248 7 s Md 249 24 s Md 250 52 s Md 251 4,0 m Md 252 2,3 m Md 254 10m | 28 m Md 255 27 m Md 256 1,3 h Md 257 5,0 h Md 258 43 m | 56 d Md 259 95 m Md 260 31,8 d Md 101 Breeding in High Flux Nuclear Reactors

  17. Ludwig-Maximilians-Universität München Maier-Leibnitz-Labor Germany D. Habs, V.Kolhinen, M. Laatiaoui, J. Neumayr, M.Sewtz, P. Thirolf Institut für Kernphysik Universität Mainz Germany FachbereichPhysik Universität Kassel Germany H. Backe A. Dretzke P. Kunz W. Lauth S. Fritzsche SHIPTRAP-Collaboration TASCA-Collaboration @GSI

More Related