1 / 21

UNCERTML - DESCRIBING AND COMMUNICATING UNCERTAINTY

UNCERTML - DESCRIBING AND COMMUNICATING UNCERTAINTY. Matthew Williams williamw@aston.ac.uk. OVERVIEW. Introduction. Motivation – the Semantic and Sensor Webs. UncertML overview. Use case – The INTAMAP project. Conclusions. MOTIVATION. The semantic and sensor webs. THE SENSOR WEB.

fausto
Download Presentation

UNCERTML - DESCRIBING AND COMMUNICATING UNCERTAINTY

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. UNCERTML - DESCRIBING AND COMMUNICATING UNCERTAINTY Matthew Williams williamw@aston.ac.uk

  2. OVERVIEW • Introduction. • Motivation – the Semantic and Sensor Webs. • UncertML overview. • Use case – The INTAMAP project. • Conclusions.

  3. MOTIVATION The semantic and sensor webs

  4. THE SENSOR WEB

  5. SENSOR WEB ENABLEMENT (SWE) • Open Geospatial Consortium (OGC) initiative • Interoperability interfaces and metadata encodings. • Real time integration of heterogeneous sensor webs into the information infrastructure. • Current SWE standards • Observations & Measurements • SensorML • SWE Common • No formalstandard for quantifying uncertainty <Quantity id="elevationAngle" fixed="false" definition="urn:ogc:def:scanElevationAngle"> <uom xlink:href="urn:ogc:unit:degree"/> <quality> <Tolerance definition="urn:ogc:def:tolerance2std"> <value> -0.02 0.02 </value> </Tolerance> </quality> <value> 25.3 </value> </Quantity>

  6. HOW UNCERTAINTY IS USED WITHIN THE SEMANTIC WEB • PR-OWL: a Bayesian Ontology Language for the Semantic Web: • Extends OWL to allow probabilistic knowledge to be represented in an ontology. • Used for reasoning with Bayesian inference. • Random variables are described by either a PR-OWL table (discrete probability) or using a proprietary format. • Other standards looking at similar concepts: • BayesOWL. • FuzzyOWL.

  7. What next? • A formal open standard for quantifying complex uncertainties • Extend to allow continuous distributions • More powerful reasoning, richer representations

  8. UNCERTML

  9. OVERVIEW • Split into three distinct packages (distributions, statistics & realisations).

  10. DISTRIBUTIONS <un:Distribution definition="http://dictionary.uncertml.org/distributions/gaussian"> <un:parameters> <un:Parameter definition="http://dictionary.uncertml.org/distributions/gaussian/mean"> <un:value>34.564</un:value> </un:Parameter> <un:Parameter definition="http://dictionary.uncertml.org/distributions/gaussian/variance"> <un:value>67.45</un:value> </un:Parameter> </un:parameters> </un:Distribution>

  11. UNCERTML An overview

  12. WEAK VS. STRONG Weak-typed Strong-typed • Benefits • Generic features have generic properties – extensible • Drawbacks • Validation becomes less meaningful • Benefits • Produces relatively simple XML features • Drawbacks • Not easily extended – all domain features must be known a priori <Distribution definition=“http://uncertml.org/gaussian”> <parameter definition=“http://uncertml.org/mean”>34.2</parameter> <parameter definition=“http://uncertml.org/variance”>12.4</parameter> </Distribution> <GaussianDistribution> <mean>34.2</mean> <variance>12.4</variance> </GaussianDistribution>

  13. THE UNCERTML DICTIONARY • Weak-typed designs rely on dictionaries. • Includes definitions of key distributions & statistics. • URIs link to dictionary entry and provide semantics. • Could be written in Semantic Web standards (OWL, RDF etc).

  14. UNCERTML – DICTIONARY EXAMPLE <gml:Dictionary xmlns:gml="http://www.opengis.net/gml" gml:id="DISTRIBUTIONS"> <gml:name>All Probability Distributions</gml:name> <gml:description>Distributions dictionary</gml:description> <gml:dictionaryEntry> <un:DistributionDefinition xmlns:un="http://www.intamap.org/uncertml" gml:id="Gaussian"> <gml:description>Gaussian distribution</gml:description> <gml:name>Gaussian</gml:name> <gml:name>Normal</gml:name> <un:functions> <un:FunctionDefinition gml:id="Gaussian_Cumulative_Distribution_Function"> <gml:description>cumulative distribution function</gml:description> <gml:name>Cumulative Distribution Function</gml:name> <un:mathML> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac>

  15. SEPARATION OF CONCERNS • Several competing standards already exist addressing the issue of units and location. • Geospatial information not always relevant – Systems biology. • Do what we know – do it well!

  16. UNCERTML An applied case study

  17. THE INTAMAP PROJECT An automatic, interoperable service providing real time interpolation between observations. EURDEP providing radiological data as a case study. Provide real time predictions to aid risk management through a Web Processing Service interface.

  18. UNCERTML IN INTAMAP • ‘Really clever’ Bayesian inference: • Different sensor errors. • Change of support. • Fast & approximate algorithms.

  19. COMPARING PREDICTIONS WITH AND WITHOUT UNCERTML Without UncertML With UncertML

  20. CONCLUSIONS • Currently no interoperable standard which fully describes random variables. • UncertML provides an extensible, weak-typed, design that can quantify uncertainty using: • Distributions. • Statistics. • Realisations. • Provide richer information for use in decision support systems.

  21. UNCERTML IN INTAMAP <om:Observation> <om:procedure xlink:href="http://www.mydomain.com/sensor_models/temperature"/> <om:resultQuality> <un:Distribution definition="http://dictionary.uncertml.org/distributions/gaussian"> <un:parameters> <un:Parameter definition="http://dictionary.uncertml.org/distributions/gaussian/parameters/mean"> <un:value>0.0</un:value> </un:Parameter> <un:Parameter definition="http://dictionary.uncertml.org/distributions/gaussian/parameters/variance"> <un:value>3.6</un:value> </un:Parameter> </un:parameters> </un:Distribution> </om:resultQuality> <om:observedProperty xlink:href="urn:x-ogc:def:phenomenon:OGC:AirTemperature"/> <om:featureOfInterest> <sa:SamplingPoint> <sa:sampledFeature xlink:href="http://www.mydomain.com/sampling_stations/ws-04231"/> <sa:position> <gml:Point> <gml:pos srsName="urn:x-ogc:def:crs:EPSG:4326"> 52.4773635864 -1.89538836479 </gml:pos> </gml:Point> </sa:position> </sa:SamplingPoint> </om:featureOfInterest> <om:result xsi:type="gml:MeasureType" uom="urn:ogc:def:uom:OGC:degC">19.4</om:result> </om:Observation> <un:DistributionArray> <un:elementType> <un:Distribution definition="http://dictionary.uncertml.org/distributions/gaussian"> <un:parameters> <un:Parameter definition="http://dictionary.uncertml.org/distributions/gaussian/mean"/> <un:Parameter definition="http://dictionary.uncertml.org/distributions/gaussian/variance"/> </un:parameters> </un:Distribution> </un:elementType> <un:elementCount>5</un:elementCount> <swe:encoding> <swe:TextBlock decimalSeparator="." blockSeparator="" tokenSeparator=","/> </swe:encoding> <swe:values> 35.2,56.75 31.2,65.31 28.2,54.23 35.6,45.21 41.5,85.24 </swe:values> </un:DistributionArray>

More Related