490 likes | 647 Views
Nosecone Calorimeter Simulation Status. Vasily Dzhordzhadze University of California, Riverside Forward Upgrade Workshop BNL, August 18-19, 2004. Outline. General overview Two approaches: Standalone and PISA Resolutions c 2 estimator Event Reconstruction and Energy measurements
E N D
Nosecone Calorimeter SimulationStatus Vasily Dzhordzhadze University of California, Riverside Forward Upgrade Workshop BNL, August 18-19, 2004 V.Dzhordzhadze
Outline • General overview • Two approaches: Standalone and PISA • Resolutions • c2 estimator • Event Reconstruction and Energy measurements • Jets in NCC • PISA Preparations • Summary V.Dzhordzhadze
Problems: -only 40 cm apart from collision point … -only 20 cm of space is available … and then …3.5 Labs of dead material downstream FST Layout: PHENIXforward spectrometers V.Dzhordzhadze
Incoming electron (10GeV) g/p0 identifier 10 GeV electron 20 cm hadronic EM 40 cm front view side view • First 8.cm: 16 layers of Tungsten (2.5 mm), Si(0.3 mm), G10(0.8 mm), Kapton (0.2 mm) and Air(1.2 mm). • After first 6 layers there is a 0.5mm thick double layer of Si,G10,Kapton,Air (this is the g/p0 identifier). • Second half has a 6 layers with same sequence of materials, only thickness of Tungsten 16.6 mm. V.Dzhordzhadze
How to build this calorimeter ….. Internal structure (not in scale). Tungsten plates 2.5 mm Spacers glued to W 2.5 mm • Constrains: • Structure in place prior to SVT installation; • Easy access for repairs/replacements; • Minimal power consumption – no forced cooling; • Compact signal processing plant – no competition for the real estate on magnet pole; V.Dzhordzhadze
Number of channels • Section 1, 2 and 3 : Pad size 15 x 15 mm • +/-36 cm 2304x16=36864 • +/-48 cm 4096x6=24576 • Total number of channels 60840 • g/p0 identifier 60mm/32 • 1 strip =1.875 mm 384x2=768 V.Dzhordzhadze
Energy Reconstruction • Section 1 [1-6], 2 [7-16] and 3 [17-22]: Pads 15 x 15 mm • g/p0 identifier 60mm/32 strip • E =a1 E1 + a2 E2 + a3 E3 F = (SiaiEi – E )2 • dF/da1 = 0 dF/da2= 0 dF/da3 = 0 • System of Linear equations • a1 = 66.97 , a2 = 84.29 , a3 = 280.67 V.Dzhordzhadze
Resolution for 10 GeV electron V.Dzhordzhadze
Resolution for 1,5,10,40 GeV electron 1 5 1 10 40 V.Dzhordzhadze
Energy Resolution s, MeV s ~ 20%/E1/2 E 1/2 V.Dzhordzhadze
Energy Resolution s, MeV E 1/2 V.Dzhordzhadze
Shower profiles for 10 GeV electron X Z W= 0.9 cm V.Dzhordzhadze
J/Y->ee in NCC V.Dzhordzhadze
J/Y->e+e- mass spectrum s = 462 MeV V.Dzhordzhadze
Coordinate resolution for J/Y->ee 968 mm V.Dzhordzhadze
NCC response on 1 GeV pions and electrons V.Dzhordzhadze
NCC response on 5 GeV pions and electrons V.Dzhordzhadze
NCC response on 10 GeV pions and electrons V.Dzhordzhadze
de/dx in Silicon for Section 1 V.Dzhordzhadze
de/dx in Silicon for Section 2 V.Dzhordzhadze
de/dx in Silicon for Section 3 V.Dzhordzhadze
Fitting of de/dx , NCC Sec1 V.Dzhordzhadze
Fitting of de/dx , NCC Sec2 V.Dzhordzhadze
Fitting of de/dx , NCC Sec3 V.Dzhordzhadze
Fitting of rms , NCC Sec1 V.Dzhordzhadze
Fitting of rms , NCC Sec2 V.Dzhordzhadze
Fitting of rms , NCC Sec3 V.Dzhordzhadze
c2 distribution • c2 Estimator for NCC Si (ei - < ei >)2 / rms2i = 1, 3 V.Dzhordzhadze
c2 distribution for 1 GeVelectrons and pions V.Dzhordzhadze
c2 distribution for 5 GeVelectrons and pions V.Dzhordzhadze
c2 distribution for 10 GeVelectrons and pions V.Dzhordzhadze
Electron selection /p rejections in % • c2 cut 5.0 7.5 10.0 1GeV 83.2/100 93.3/99.1 97.4/78.0 5GeV 78.1/100 88.9/100 93.1/100 10GeV 76.2/100 87.1/100 92.2/100 20GeV 79.5/100 88.1/100 91.9/100 40GeV 76.7/100 85.1/100 89.8/100 V.Dzhordzhadze
NCC Simulation of Jets V.Dzhordzhadze
NCC Simulation of Jet + single g V.Dzhordzhadze
Jet + soft particles V.Dzhordzhadze
Jet energy reconstruction V.Dzhordzhadze
Jet energy ratio - reconstructed / simulated V.Dzhordzhadze
Jet energy ratio - reconstructed / simulated V.Dzhordzhadze
NCC Simulation of 10 GeV Single electrons in PISA V.Dzhordzhadze
NCC Simulation of 10 GeV Single electrons in PISA V.Dzhordzhadze
NCC Simulation of 10 GeV Single muons in PISA Geant particle types V.Dzhordzhadze
NCC Simulation of 20 GeV Single muons in PISA Z coordinate Z V.Dzhordzhadze
NCC Simulation of 10 GeV Single muons in PISA 130 KeV dedx, KeV V.Dzhordzhadze
NCC Simulation of 10 GeV Single electrons in PISA X vs Y Y X V.Dzhordzhadze
Summary • Geant 3 based NCC simulation code is written • NCC code is ready for working into the PISA environment • NCC resolution ~ (20-23)%/E1/2 was obtained • Coordinate resolution of the g detector < 1 mm • J/Y-> ee decay and reconstruction by the NCC was performed. 72% of events were reconstructed: s = 462 MeV • Pion rejection and Jet reconstruction with NCC wasstudied V.Dzhordzhadze
J/Y->m+m- Yield and Resolutions Nosecone HCAL J/Y Width Signall x0 GeV/c2 events --------------------------------------------------------------------------------- Cu 19 cm No 155+/-10 176+/-13 4.84 47.4 W 9 cm No 163+/-11 165+/-13 4.52 59.8 W 7 cm No 155+/-13 160+/-13 4.31 54.1 W 9 cm Yes 175+/-12 153+/-12 5.84 73.8 W 7 cm Yes 162+/-12 140+/-12 5.63 68.1 V.Dzhordzhadze
Details of the Geometry V.Dzhordzhadze
Materials used in NCC G10 0.8 mm Ka 0.2 mm Tungsten 2.5 mm or 16.6 mm Si 0.3 mm Air 1.2 mm 4-40 cm 4-50 cm V.Dzhordzhadze
40 GeV electron display V.Dzhordzhadze