250 likes | 399 Views
Az informatika logikai alapjai. INCK401 Előadó: Dr. Mihálydeák Tamás Sándor Gyakorlatvezető: Kovács Zita 2014/2015. I. félév. 1. gyakorlat. Tartalom. Teszt 1. Alapfogalmak (ismétlés) az alábbi témakörökből: Halmazok Relációk Függvények. Teszt 1. - Halmazok.
E N D
Az informatika logikai alapjai INCK401Előadó: Dr. Mihálydeák Tamás Sándor Gyakorlatvezető: Kovács Zita 2014/2015. I. félév 1. gyakorlat
Tartalom • Teszt 1. • Alapfogalmak (ismétlés) az alábbi témakörökből: • Halmazok • Relációk • Függvények
Teszt 1. - Halmazok • Írd le matematikai jelekkel a következő halmazt! Legyen A a 6-nál nagyobb és a 14-nél nem nagyobb természetes számok halmaza! • Igaz vagy hamis?
Teszt 1. - Halmazok • Legyen A={1;2;3} és B={2;4;6}. AUB=? A∩B=? A\B=? • Mennyi a számossága az alábbi halmaznak? C = {2; 3; 5; 7; 11; 13; 17; 19} • Legyen H= {k; e; n; y; é; r} és A = {k; é; r}. Mi az A halmaznak a H halmazra vonatkozó komplementere? • Legyen A = {3; 5} és B={1;2}. AxB=?
Teszt 1. - Függvények • Add meg azt a függvényt, amely a számokhoz hozzárendeli a reciprokuk kétszeresét!
1. Halmazok • halmaz jelölése: nagybetűkkel, pl.: A, B, C, … • halmaz eleme jelölése: kisbetűkkel, pl.: a, b, c,… • eleme, hozzátartozik: • az eleme reláció jele: ∈; • ha a egy objektum, H pedig egy halmaz, akkor a∈H azt fejezi ki, hogy az a objektum eleme a H halmaznak • számosság: elemeinek darabszáma; jele: |A| • üreshalmaz: egyetlen eleme sincs, jele: ∅ vagy {} • megj.: |∅|=0; ∅ ≠ {0}
1. Halmazok • Megadási módok • Felsorolással • Matematikai kifejezéssel • Szöveggel • Adott: ha egyértelműen eldönthető minden elemről, hogy a halmazhoz tartozik-e vagy sem. • Szemléltetése pl. Venn-diagrammal
1. Halmazok • Részhalmaz: A részhalmaza B-nek, ha A minden eleme B-nek is eleme. • Jele: A ⊆ B • Példa: • B = {1;2;5;7;9} • A = {1;7} • C = {2;5;9} • Részhalmazok felsorolása • az A halmaz összes részhalmazának darabszáma: 2|A| • Megj: ∅ ⊆ B, B ⊆ B (nem valódi részhalmazok)
Műveletek halmazokkal • Egyesítés (unió) • Közös rész (metszet) • Különbség • Szimmetrikus különbség • Részhalmaz kiegészítő (komplementer) halmaza • Két halmaz Descartes-féle (direkt) szorzata
1. Egyesítés (unió) • Az A és B halmazok uniója azoknak az elemeknek a halmaza, amelyek A és B közül legalább az egyikhez hozzátartoznak. • Jele: A ∪ B • A ∪ B = { x | x ∈ A vagy x ∈ B} A B
Unió Példa: A = {1; 3; 5} B = {2; 4; 6} A ∪ B = {1; 2; 3; 4; 5; 6}
2. Közös rész (metszet) • Az A és B halmazok metszete azoknak az elemeknek a halmaza, amelyek A-hoz is és B-hez is hozzátartoznak. • Jele: A ∩ B • A ∩ B = { x | x ∈ A és x ∈ B} • Ha A ∩ B = ∅, akkor az A és a B halmazt diszjunkthalmaznak nevezzük.
Metszet Példa: A = {a; b; c; d; e} B = {b; e; f; g} A ∩ B = {b; e}
3. Különbség • Az A és B halmazok különbséghalmazán azoknak az elemeknek a halmazát értjük, amelyek A-hoz hozzátartoznak, de B-hez nem. • Jele: A \ B A B B A
Különbség Példa: A = {1; 2; 3; 4; 5; 6} B = {2; 4; 6; 8; 10} A \ B = {1; 3; 5} B \ A = {8; 10}
4. Szimmetrikus különbség • Az A és a B halmazok szimmetrikus különbségén az halmazt értjük. • Jele:
Szimmetrikus különbség • A = {1;2;3;4;5} • B = {2;4;6;8} • A∆B=(A\B) U (B\A)={1;3;5} U {6;8}={1;3;5;6;8}
5. Kiegészítő (komplementer) halmaz • Legyen . H azon elemeinek halmazát, amelyek nem elemei A-nak, az A halmaz H halmazra vonatkozó kiegészítő halmazának nevezzük. • Jele: H A
6. Két halmaz Descartes (direkt) - szorzata • Azoknak a rendezett pároknak a halmazát, amelyeknek az első komponense az A-nak, a második komponense a B-nek eleme, az A és a B halmazok Descartes-féle szorzatának nevezzük. • Jele: A x B • A x B = { (x;y) | x ∈ A és y ∈ B } • Ha |A|=n és |B|=m, akkor |A x B|=n*m
Descartes-szorzat Példa: • A = {1; 2} • B = {1; 3} • A x B = {(1;1); (1;3); (2;1); (2;3)}
6+1. n db halmaz Descartes (direkt) - szorzata • Azoknak a rendezett elem-n-eseknek a halmazát, amelyeknek az első komponense az A1-nek, a második komponense a A2-nek, …, és az n-dik komponense az An-nek eleme, az A1, A2, …An halmazok Descartes-féle szorzatának nevezzük. • Jele: A1 x A2 x … x An • A1x A2x … xAn = { (a1,a2,…,an) | a1∈A1, a2∈ A2, …, an∈ An }
Halmazműveletek főbb azonosságai • Két halmaz egyenlő, ha ugyanazok az elemeik. • Kommutatív • Asszociatív • Disztributív • Idempotens • De-Morgan • Stb…
Segédletek logikából • Halmazokhoz: http://www.math.klte.hu/~kovacsa/Halmaz.pdf • Dr. Mihálydeák Tamás: • http://www.inf.unideb.hu/~mihalydeak/Logika_html_2011_11_15.zip • http://www.inf.unideb.hu/~mihalydeak/Logika_my_twt-treeview.html • http://www.inf.unideb.hu/~mihalydeak/Inf_log_ea_06_07_1.pdf • Dr. Várterész Magda: • http://www.inf.unideb.hu/~varteres/logika/Logikafo.pdf • http://www.inf.unideb.hu/~varteres/logika_peldatar/matlog.pdf • http://www.inf.unideb.hu/~varteres/logika_peldatar/megoldas.pdf • Lengyel Zoltán: • http://www.inf.unideb.hu/~lengyelz/docs/logika.pdf