390 likes | 528 Views
Der Alterungsprozess roter Blutzellen und die Auftrennung der Zellen nach Alter. Seminar 1 Benjamin Hanf 09.05.2012. Funktion:. Regulationsmechanismen - O 2 Transport; sehr flexibel erhöhte Abnutzung. Unterschiedliche Formen der RBCs Modifiziert nach Williams, 2008. Motivierung:.
E N D
Der Alterungsprozess roter Blutzellen und die Auftrennung der Zellen nach Alter Seminar 1 Benjamin Hanf 09.05.2012
Funktion: • Regulationsmechanismen • - O2 Transport; sehr flexibel erhöhte Abnutzung Unterschiedliche Formen der RBCs Modifiziert nach Williams, 2008
Motivierung: • Mögliche Beteiligung von roten Blutkörperchen (RBCs) an Thrombusbildung • Ideales Modell für Alterungsprozesse (da keine DNA/RNA mehr) Der Alterungsprozess roter Blutzellen und die Auftrennung der Zellen nach Alter
Thrombusbildung: ThrombusbildungModifiziert nach HI (High Impact) Thrombozyten heften sich an Kollagen-Fasern erster Verschluss
Thrombusbildung: ThrombusbildungModifiziert nach HI (High Impact) Gerinnungskaskade: Prothrombin aktive Form Thrombin Thrombin katalysiert Umwandlung Fibrinogen Fibrin
Thrombusbildung: ThrombusbildungModifiziert nach HI (High Impact) • Fibrin: Gewebe aus maschenartigen Fäden, die RBCs einfangen
Thrombusbildung: ThrombusbildungModifiziert nach HI (High Impact) • Passive Beteiligung der RBCs?
Motivierung: • Mögliche Beteiligung von RBCs an Thrombusbildung • Erhöhter Hämatokrit Endogenous Thrombin Potential Modifiziert nach McDonald et al., 2006
Motivierung: • Mögliche Beteiligung von RBCs an Thrombenbildung • Erhöhter Hämatokrit • Durch Phosphatidylserin (PS) Fähigkeit zur Aggregation PS-Exposition und Aggregation von RBCs Modifiziert nach Steffen et al., 2011
Motivierung: • Mögliche Beteiligung von RBCs an Thrombenbildung • Erhöhter Hämatokrit • Durch Phosphatidylserin (PS) Fähigkeit zur Aggregation PS-Exposition und Aggregation von RBCs Modifiziert nach Wagner et al., 2011
Kationen-Kanal (2-wertige Kationen; Ca2+) Ca2+ PGE2, LPA Ca2+ PKC Scramblase PS PS induziert H2O, K+, Cl- Gardos-Kanal H2O, K+, Cl- Signalkaskade von RBCs Modifiziert nach Kaestner et al., 2004
A23187 Gardos-Kanal Scramblase Schrumpfen PS-Exposition Aggregation Einfluss Gardos-Kanal / Scramblase auf Aggregation Modifiziert nach Kaestner et al., 2004
Motivierung: • Mögliche Beteiligung von roten Blutkörperchen (RBCs) an Thrombenbildung • Ideales Modell für Alterungsprozesse (da keine DNA/RNA mehr) Lebenszyklus RBCs Modifiziert nach Silbernagel und Despoupolos et al., 2004
(Hämoglobin) Retikulozyt (RNA / DNA Reste) Phagozytose Max. 120 Tage Lebenszyklus RBCs Modifiziert nach Silbernagel und Despoupolos et al., 2004
Auftrennung nach Alter (Methoden): • Dichtegradientenseparation (in vitro) • Percoll (s.u.) • Stractan (stark verzweigtes Arabinogalaktan aus Lärchenholz) • Dextran (Polymere aus Glucose) • Serum Albumin (Protein, im Blut vorkommender Reservestoff) • Isotopenmarkierung (in vivo) • 14C, 51Cr…
Ein Gemisch verschieden alter Zellen (bis zu 120 Tage max. Lebensdauer, Durchschnittsalter: ca. 40 Tage), die unterschiedlich Verhaltensweisen zeigen. Separation nach Dichte Modifiziert nach Piomelli et al., 2007
Schema / Dichtegradientenseparation Fraktion 1 • Percoll • Beschichtete Silica-Partikel • Wasserlöslich • biologisch inert Fraktion 2 Fraktion 3 Fraktion 4 Fraktion 5 Dichtegradientenseparation von RBCs Modifiziert nach Wagner, 2009
Isotopenmarkierung Hypertransfusion Schema Modifiziert nach Mueller et al., 1987
Überleben der Zellen wurde mit Isotopen-markiertem 51Cr getestet. Künstlich gealterte Zellen: 1 Tag (7%) Normale Zellen: 15 Tage (100%) Überlebensrate der RBCs Modifiziert nach Mueller et al., 1987
Effekte Bekannt: - Redox-System - Protein 4.1 a/b - Größe Neu: - PMA - LPA
Effekte RedOx-System Aktivität des Plasmamembran-Redoxsystems bei Erythrozyten unterschiedlichen Alters: Gehalt an Ferrocyanid der aufgetrennten Zellen nach Alter Wagner, 2009 Ferrocyanid-Assay
Effekte Protein 4.1 a/b Unterschied nach Alter Bande 4.1a und 4.1b Modifiziert nach Mueller et al., 1987 Von Anfangs (C) ca. 70:30(b:a) zu ca. 50:50 (b:a) bei alten (H) Zellen.
Effekte Größe Häufigkeit in Größe der Zellen nach Alter Wagner, 2009
Effekte Bekannt: - Redox-System - Protein 4.1 a/b - Größe Neu: - PMA - LPA
Kationen-Kanal (2-wertige Kationen; Ca2+) Ca2+ A23187 PGE2, LPA Ca2+ Ca2+ PKC aktiviert Scramblase PS PS PMA induziert H2O, K+, Cl- Gardos-Kanal H2O, K+, Cl- Signalkaskade von RBCs Modifiziert nach Kaestner et al., 2004
0‘ 5‘ 30‘ Standard nach 30 Minuten bei 33 a.u. -63 a.u. ggü. ~1500 a.u. bei angeregten Zellen
Effekte PS-Exposition Kontrolle stark Kontrolle: Nach alter getrennte Zellen mit starker PS-Exposition Wagner, 2009
Effekte PS-Exposition Kontrolle schwach Kontrolle: Nach alter getrennte Zellen mit schwacherPS-Exposition Wagner, 2009
Effekte PS-Exposition PMA stark PMA: Nach alter getrennte Zellen mit starker PS-Exposition Wagner, 2009
Effekte PS-Exposition PMA schwach PMA: Nach alter getrennte Zellen mit schwacher PS-Exposition Wagner, 2009
Effekte PS-Exposition LPA stark LPA: Nach alter getrennte Zellen mit starker PS-Exposition Wagner, 2009
Effekte PS-Exposition LPA schwach LPA: Nach alter getrennte Zellen mit schwacher PS-Exposition Wagner, 2009
Effekte PS-Exposition Hämolyse (LPA stark) Hämolyserate LPA: Nach alter getrennte Zellen mit starker PS-Exposition Wagner, 2009 Generelles Problem: Hämolyserate + Reaktion des Blutes auf LPA (Spenderabhängig)
Kationen-Kanal (2-wertige Kationen; Ca2+) Ca2+ A23187 PGE2, LPA Ca2+ Ca2+ PKC aktiviert Scramblase PS PS PMA induziert H2O, K+, Cl- Gardos-Kanal H2O, K+, Cl- Signalkaskade von RBCs Modifiziert nach Kaestner et al., 2004
Fazit / Ausblick • Effektive Methode zur Separation der Zellen nach Alter • Redoxsystem • Zellgröße • Bande 4.1 a / b • Kein Trend in den verschiedenen Altersklassen mit PMA / LPA • Doppelbestimmung von intrazellulären Ca2+– Gehalt und PS Exposition
L. Wagner, D.B. Nguyen, A. Jung, P. Steffen, C. Wagner, L. Kaestner, T. Mueller, I. Bernhardt„Phosphatidylserine Exposure and Aggregation of Red Blood Cells“ (2011) Red Cell Club, Philadelphia • M. Osanai, H. Rembold „Entwicklungsabhängige Mitochondriale Enzymaktivitäten bei den Kasten der Honigbiene“ (1968) Max-Planck-Institut für Biochemie • S. K. Jain, „Evidence for membrane lipid peroxidation during the in vivo aging of human erythrocytes” (1988) Biochimica et Biophysica • T. Tiffert, N. Daw, Z. Etzion, R. M. Bookchin, V. L. Lew “Age Decline in the Activity of the Ca2+-sensitive K+ Channel of HumanRed Blood Cells” (2007) The Journal of General Physiology • M. K. Horne III, A. M. Cullinane, P. K. Merryman, E. K. Hoddeson “The effect of red blood cells on thrombin generation” (2006), bjh • V. Peyrou, J. C Lormeau, J. P. Hérault, C. Gaich, A. M. Pfliegger, J. M. Herbert „Contribution of Erythrocytes to Thrombin Generation in Whole Blood“ (1999) ThrombHaemost • T. J. Mueller, C. W. Jackson, M. E. Dockter, M. Morrison “Membrane Skeletal Alterations During In Vivo Mouse Red Cell Aging” (1986)J. Clin. Invest. • S. Berndl „Fluoreszente H-Aggregate von Thiazol Orange in DNA und RNA, sowie postsynthetische Klick-Ligation an DNA (2010) Dissertation Uni Regensburg • S. Piomelli, C. Seaman “Mechanism Red Blood Density Cell Aging: Relationship of Cell and Cell Age” (1993) American Journal of Hematology • H. U. Lutz, P. Stammler, S. Fasler, M. Ingold, J. Fehr „Density separation of human red blood cells on self forming Percoll R gradients: correlation with cell age” (1992) Biochimica et Biophysica • V. L. Lew, N. Daw, Z. Etzion, T. Tiffert, A. Muoma, L. Vanagas , R. M. Bookchin “Effects of age-dependent membrane transport changes on the homeostasis of senescent human red blood cells” (2012) blood • N. Mohandas, W. Groner „Cell Membrane and Volume Changes during Red Cell Development and Aging” University of California, San Francisco • L. Wagner “Untersuchung dynamischer Prozesse an der Membran humaner Erythrozyten in Abhängigkeit vom Zellalter“ (2009) Diplomarbeit Universität des Saarlandes • W. Williams, “Hem I Erythrocytes” (2008) Morphology and Physiology, www.clt.astate.edu/wwilliam/hem_i_erythrocytes_morphology_and_physiologyhtm • High Impacthttp://www.highimpact.com/animations/medical-animations/MED01296/ • L. Kaestner, W. Tabellion, P. Lipp, I. Bernhardt “Prostaglandin E2 activates channel-mediated calcium entry in human erythrocytes: an indication for a blood clot formation supporting process” (2004) ThrombHaemost. 2004 Dec;92(6):1269-72. • S. Silbernagel, A. Despopoulus „Taschenatlas der Physiologie“ (2007) 7. Auflage, Thieme, Stuttgart, S. 89 • I. Bernhardt „Die rote Blutzelle als Modell zur Untersuchung biophysikalischer Regulationsmechanismen an biologischen Membranen “ (2003) Magazin Forschung Universität des Saarlandes Referenzen
Vielen Dank für Eure Aufmerksamkeit. Gibt es Fragen?
Nachweis einer gelungenen Separation Dichtegradientenseparation Nachweis der RNA / DNA mittels Reagenz Retic-COUNT (Thiazol-Orange oder Polymethin) Polymethin (ungrade Anzahl an Methin-Gruppen, Bsp. Cyanin) - In Lösung kaum Fluoreszenz - In Kontakt mit DNA / RNA Fluoreszenzanstieg, da eingeschränkten Rotation der aromatischen Systeme um die Methingruppe
Isotopenmarkierung Nachweis Verschiedene Enzym-Aktivitäten messbar: Aktivität der - Glutamic-oxalacetictransaminase(GOT) - Glucose-6-phosphate dehydrogenase (G6PD) Alte Zellen besitzen nurnoch ca.60% Aktivität gegenüber normalen Zellen