380 likes | 647 Views
Teorema de Bayes. Sistema Especialista de Apoio ao Diagnostico Médico usando a Probabilidade Bayesiana. Thais Lima Machado. Parte I. Sistema Especialista de Apoio ao Diagnostico Médico. Raciocínio.
E N D
Teorema de Bayes • Sistema Especialista de Apoio ao Diagnostico Médico usando a Probabilidade Bayesiana. Thais Lima Machado
Parte I • Sistema Especialista de Apoio ao Diagnostico Médico
Raciocínio • “Ninguém se iluda pensando que pode competir com a memória de um computador e muito mais eu isso com a rapidez de utilização dos dados memorizados... É um mundo novo que desponta aceleradamente e que revolucionará toda a estrutura de trabalho médico e , principalmente, a ética médica” Ribeiro JC
Sistemas Especialistas • São frutos da aplicação da chamada engenharia do conhecimento, uma das subespecialidades da Inteligência Artificial. • Depende mais da quantidade de conhecimento neles depositados do que da capacidade de adquirir conhecimentos.
S.E. de Apoio ao Diagnóstico em Medicina • No início os SE dividiram-se em: • Sistemas baseados em regras • Sistemas baseados em reconhecimento de padrões
Sistemas Baseados em Regras • Porém essas regras só atuavam em áreas de domínio limitado. • Problema: Neste sistema é que em áreas mais complexas, como o diagnóstico em Medicina Interna, o domínio do conhecimento é de tal forma extenso que os torna de implementação mais difícil.
Sistemas Baseados em Reconhecimento de Padrões • Se o programa fosse desenvolvidos em cima do sistema de reconhecimento de padrões, ele se assemelhará à maneira como muitos iniciantes abordam o processo de diagnóstico, e consequentemente falhará por não levar em conta vários fatores só adquiridos com a experiência.
Diagnósticos • “Uma série de procedimentos de ordem intelectual e operacional através dos quais se obtém uma resposta a um problema clínico.” Rodrigues PMM
Lógica do Processo de Diagnósticos • Com o avanço da tecnologia o problema do diagnostico fica em primeiro plano das preocupações. • “O diagnóstico definitivo saiu da esfera clínica e passou a depender de uma tecnologia médica de altos custos e potencialmente iatrogênica.” Rodrigues PMM
Tipos de Raciocínio Diagnóstico • Dividido em três tipos básicos: • O raciocínio fisiopatológico; • O raciocínio por reconhecimento de padrões; • O raciocínio probabilistico.
Raciocínio Fisiopatológico • É o mais dificil de simular em um programa. • Pois se ocupa das modificações estruturais e/ou funcionais produzidas por doença no organismo.
Raciocínio por Reconhecimento de Padrões • É o mais freqüentemente usado tanto por estudantes quanto por especialistas. • É o mais fácil de simular programas de computador • O médico formula hipóteses, e a partir daí confronta os dados do paciente com os da doença.
Raciocínio Probabilistico • Baseia-se de que os médicos convivem com a incerteza em um grau comparável ao de bem poucos profissionais. A probabilidade seria apenas uma maneira de medir essa incerteza. • Normalmente é utilizado intuitivamente o chamado Teorema de Bayes
Raciocínio Probabilistico • O raciocínio médico é sabiamente mais baseado em probabilidades do que em certezas, sendo esse raciocínio tão importante no processo de diagnostico.
Parte II • Teorema de Bayes
Thomas Bayes • As técnicas de probabilidade que são baseadas no prognóstico de que alguma coisa vai acontecer por causa da evidência de alguma outra coisa que aconteceu no passado foram desenvolvidas por um homem chamado BAYES.
Thomas Bayes • Thomas Bayes (1702-1761) foi um filósofo, matemático e religioso inglês, sendo considerado um dos pais do Cálculo de Probabilidade.
Teorema de Bayes • Análise bayesiana seria, pois, uma teoria de decisão estatística para cálculo de probabilidade de uma proposição, com base na probabilidade original e nas novas relevâncias. • Esse teorema está contido na chamada Probabilidade Condicional.
Fundamentos da Probabilidade • A probabilidade é o estudo das chances de ocorrência fortuita dos eventos. • A probabilidade é definida como: número total de maneiras como um determinado evento pode ocorrer • P= número total de maneiras como qualquer evento pode ocorrer
Probabilidade • Exemplo: Suponha que você esteja jogando cara ou coroa. Você joga para cima 2 vezes. Pode ocorrer: • 1º Arremesso 2ºArremesso Cara Cara Cara Coroa Coroa Cara Coroa Coroa
Probabilidade • A probabilidade de coroa aparecer em um dos dois arremessos é: número total de maneiras como coroa pode ocorrer em 2 arremessos • P= número total de arremessos diferentes que podem ocorrer • P= 3/4
Probabilidade • A probabilidade de alguma coisa ocorrer deve ser sempre maior ou igual a 0 OU • A probabilidade de alguma coisa ocorrer deve ser sempre menor ou igual a 1
Probabilidade Bayesiana • Bayes desenvolveu algumas das teorias básicas da probabilidade condicional. • Exemplo: Considere novamente os dois arremessos da moeda. A probabilidade de se ter um cara seguida de uma coroa no 2º arremesso, sabendo-se que uma cara saiu no 1º arremesso, é 1/2
Probabilidade Bayesiana • Isso acontece porque o fato de sabermos que uma cara já foi obtida cria um novo conjunto de possibilidades: • 1º Arremesso 2ºArremesso Cara Cara Cara Coroa
Probabilidade Bayesiana • Definiremos a probabilidade bayesiana como a probabilidade de alguma coisa ocorrer, que vamos chamar de s. Com a evidência de que alguma outra coisa já ocorreu, que chamaremos de e. Essa probabilidade representada como P(s|e).
Probabilidade Bayesiana • A equação da probabilidade de duas coisas ocorrerem é: P(ees) = P(s|e) * P(e) • P(ees) -> A probabilidade de e e s ocorrerem, onde e ocorre primeiro. • P(s|e) -> Probabilidade de s ocorrer se soubermos que e já ocorreu. • P(e) -> Probabilidade de e ocorrer.
Probabilidade Bayesiana • Exemplo: I I O O • Calcularemos a probabilidade de pegarmos um O primeiro e depois um I em duas escolhas. • Equação: P(OeI) = P(I|O) * P(O)
Probabilidade Bayesiana • P(OeI) = P(I|O) * P(O) Solução: • A probabilidade de se pegar um O, P(O) = 2/4 • I I O • A probabilidade de se pegar um I na suposição de que um O já foi pego, P(I|O) = 2/3 • A Probabilidade P(OeI) é • P(OeI) = P(I|O) * P(O) = 2/3 * 2/4 = 1/3
Probabilidade Bayesiana • Uma outra equação de probabilidade condicional que usaremos em nossos sistema especialista é: • P(s) = P(s|e) * P(e) + p(s|nãoe) * P(nãoe)
Probabilidade Bayesiana • P(s) = P(s|e) * P(e) + p(s|nãoe) * P(nãoe) • P(s) -> A probabilidade de s. • P(s|e) -> Probabilidade de s ocorrer se soubermos que e já ocorreu. • P(e) -> Probabilidade de e ocorrer. • p(s|nãoe) -> Probabilidade de s ocorrer assumindo-se que e não ocorra. • P(nãoe) -> Probabilidade de e não ocorrer.
Uso da Probabilidade Bayesiana • Um aspecto inerente à formula Bayesiana é a possibilidade de ser aplicada sequencialmente, em outras palavras após aplicar ao resultado de um teste à fórmula bayesiana, o valor obtido passa a ser a nova probabilidade de ocorrência da doença. • Um resultado não interfere no outro.