1 / 5

Teorema Bayes

Teorema Bayes. S. B. A. B’. A = (B A) (B’ A) P(A) = P(B A) + P(B’ A) = P(B).P(A │ B) + P(B’).P(A │ B’). Dalil Peluang Total. Jika kejadian-kejadian B i ≠ 0 ; i= 1,2,3,…,k maka untuk sembarang kejadian A yang

esme
Download Presentation

Teorema Bayes

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Teorema Bayes S B A B’ A= (BA) (B’ A) P(A) = P(BA) + P(B’A) = P(B).P(A│B) + P(B’).P(A│B’)

  2. DalilPeluang Total Jikakejadian-kejadian Bi ≠ 0 ; i= 1,2,3,…,k makauntuksembarangkejadian A yang merupakanhimpunanbagian S berlaku: P(A) = P(B1).P(A│B1)+P(B2).P(A│B2)+ ….. + P(Bk).P(A│Bk)

  3. Kaidah Bayes Jikakejadian B1, B2, B3, …, Bkmerupakansekatandariruangcontoh S dengan P(Bi) ≠ 0 untuk i= 1,2,…, k ; makauntuksembarangkejadian A yang bersifat P(A) ≠ 0 : P(Bi│A) = =

  4. Teladan 1 120 S IV 100 30 AS 60 40 I 20 III 80 200 II Diagram Venn untukkejadianmemakaikartuteleponseluler As padasampelmahasiswasetiaptingkat di STIS

  5. Teladan 2 Suaturestoran pizza menyediakanbahandasarutamadalamtopping pizza dengankomposisidaging 60%, ayam 30% dansisanyaikan. Bila 20% dalam toping dasarutamadaging, 10% dalam toping dasarayamdan 5% dalam toping dasarikanselaluterdapatkejumozarella, hitunglahpeluangbahwa: a. seorang yang memesan pizza mendapatkeju mozarella b. seorang yang memesan pizza mendapatkeju mozarellaternyatamemilih toping dasarayam

More Related