360 likes | 903 Views
Cykl Kwasów Tri-karboksylowych = TCA = Cykl Krebsa = Cykl Kwasu Cytrynowego. Miejsce cyklu Krebsa na mapie metabolicznej. Uproszczony schemat cyklu Krebsa (8 etapów). Dwie drogi wejścia pirogronianu do cyklu kwasów trikarboksylowych (wątroba). Pirogronian. Szczawiooctan. Acetylo-CoA.
E N D
Cykl Kwasów Tri-karboksylowych=TCA = CyklKrebsa =Cykl Kwasu Cytrynowego
Uproszczony schemat cyklu Krebsa (8 etapów)
Dwie drogi wejścia pirogronianu do cyklu kwasów trikarboksylowych (wątroba) Pirogronian Szczawiooctan Acetylo-CoA
Karboksylaza pirogronianowa Karboksylaza pirogronianowa używa kowalencyjnie przyłączonej biotyny jako kofaktoradwuetapowej reakcji karboksylacji pirogronianu. Biotyna jest najpierw łączona z CO2pochodzącym od węglanu, (przy zużyciu ATP). Grupa karboksylowa jest następnie przenoszona przez karboksybiotynę na drugie miejsce katalityczne, gdzie pirogronian jest przekształcany w szczawiooctan.
Kompleks dehydrogenazy pirogronianowej składa się z trzech białek o różnych aktywnościach. Zwróć uwagę na 5 różnych kofaktorów tego złożonego procesu. Pirogronian Acetylo-CoA
Kwas Liponowy pełni tu funkcję ramienia przenoszącego pozostałą po dekarboksylacji pirogronianu resztę hydroksyetylową, pomiędzy podjednostkami E1 i E3, katalizującymi kolejne etapy reakcji fragment pirgronianu Utleniony Liponian Tiamina
Syntaza Cytrynianowa Cytrynian powstaje w reakcji katalizowanej przez syntazęcytrynianową ze szczawiooctanu i acetylo-CoA. Mechanizm polega na ataku nukleofilowym karboanionu acetylo-CoA na węgiel karbonylowy szczawiooctanu, po czym dochodzi do hydrolizy wiązania tioestrowego.
Reakcje katalizowane przez Akonitazę -H2O + H2O Kwas izocytrynowy Kwas Cytrynowy Kwas akonitowy Akonitaza (Hydrataza akonitanowa; EC 4.2.1.3 ) jest enzymem katalizującym stereo-specificzną izomeryzację cytrynianu do izocytrynianupoprzez związek pośredni – kwas cis-akonitowy.
Akonitaza (kont.) Akonitaza zawiera zespół żelazowo-siarkowyzłożony z trzech atomów żelaza i czterech atomów siarki, ułożonych w strukturę bliską kubicznej. Zespół ten jest umocowany w białku przez grupy tiolowe trzech reszt cysteiny. Brak mu jednego z narożników sześcianu. W tym właśnie miejscu wiązany jest jon F2+, odpowiedzialny za aktywację akonitazy. Ten atom koordynacyjnie wiąże C-3 karboksyluoraz grupę hydroksylową cytrynianu. Działa więc jako kwas Lewisa:przyłączając parę elektronów grupy hydroksylowej, ułatwia odłączenie całej reszty. Reakcja netto nie jest typu redoksowego!
Dehydrogenaza Isocytrynianowa (pierwsza reakcja redoksowa cyklu) Dehydrogenaza Isocytrynianowa (IDH) jest enzymem cyklu pośrednio współdziałającym z łańcuchem oddechowym. Jest odpowiedzialna za odwracalne przekształcanie izocytrynianu w -ketoglutaran i CO2, w dwuetapowej reakcji. Pierwszym etapem jest utlenienie izocytrynianu do szczawiobursztynianu. W drugim etapie reakcji szczawiobursztynian traci swój -karboksyl jako CO2.
Kompleksdehydrogenazy-ketoglutaranowej -Ketoglutaran jest oksydacyjnie dekarboksylowany dobursztynylo-CoA przezdehydrogenazę-ketoglutaranową.Wtej reakcji powstaje druga już cząsteczka CO2cyklu Krebsa, oraz cząsteczka NADH. Ten kompleks wielo-enzymatyczny jest bardzo podobny do kompleksu dehydrogenazy pirogronianowej zarówno pod względem składu białkowego, rodzaju kofaktorów, jak i mechanizmu działania. Tak samo jak PDH, reakcja -KGDH przebiega z wysoką standardową zmianą energii swobodnej Gibbsa. Reakcja jest regulowana proporcjami stężeń NAD+/NADH oraz ATP/ADP.
Reakcja i kofaktory tlenowej dekarboksylacji -ketoglutaranu
Tiokinazabursztynylowa(Syntetaza bursztynylo - CoA) Konwersja wysokoenergetycznego bursztynylo-CoA do wolnego bursztynianu biegnie z udziałem enzymu zdolnego do syntezy wysokoenergetycznego nukleotydutrifosforanowego. Taki proces zwiemy fosforylacją substratową. Powstaje wtedy połączenie enzym -wysokoenergetyczny związek pośredni. Dopiero z niego „wysoko energetyczna reszta fosforanowa”jestprzenoszona na GDP. Powstały w ten sposób mitochondrialy GTP podlega trans-fosforylacji katalizowanej przez nukleozydo-difosfo-kinazęz cząsteczką ADP, i wytworzenie ATP. Cząsteczka GTP jest odtwarzana potem w kolejnymobrocie cyklu.
DehydrogenazaBursztynianowa (SDH) Katalizuje utlenienie bursztynianu do fumaranu z równoczesną redukcją kowalencyjnie związanego z białkiem FAD, oraz żelaza niehemowego. W komórkach ssaków końcowym akceptorem elektronów jest koenzym Q.
Dehydrogenaza bursztynianowa (SDH, Kompleks II) Skład: Cztery podjednostki białkowe (A,B,C,D) oraz następujące przenośniki elektronów: FADH2, zespoły Fe-S, hem b560, ubichinon.
Fumaraza (hydrataza fumaranowa) Katalizuje katalizuje uwodnienie fumaranu do kwasu jabłkowego.
Dehydrogenaza jabłczanowa (MDH) Katalizuje odwracalną reakcję utlenienia jabłczanu do szczawiooctanu przy standardowej zmianie energii swobodnej około +7 kcal/mol. Natomiast syntaza cytrynianowa, katalizująca reakcję kondensacji acetylo-CoA ze szczawiooctanem,zachodzi przy standardowej wielkości g równej około -8 kcal/mol. Zatem to ten enzym „ciągnie” reakcję MDH w kierunku szczawiooctanu.
Sumaryczne równanie cyklu kwasów trikarboksylowych: Acetylo-CoA + 3NAD+ + FAD + GDP + Pi + 2H2O 2CO2 + 3NADH + FADH2 + GTP + 2H+ + HSCoA
Energetyka cyklu Krebsa w sprzężeniu z łańcuchem oddechowym. Obliczanie energii zmagazynowanej w postaci ATP W całym cyklu są: 3 utlenienia z NAD 1 utlenienie z FAD 1 fosforylacja substratowa Produkcja ATP sprzężona z tymi procesami wynosi odpowiednio: 3 x 2,5 = 7,5 cząsteczek ATP 1 x 1,5 = 1,5 cząsteczek ATP 1 x 1 = 1 GTP (= 1 cząsteczka ATP) W sumie = 10 cząsteczek ATP (utworzone z ADP) przy spaleniu jednej reszty octanowej do H2O i CO2 Jest to równoważne 310 kJ w warunkach standardowych.
Cykl kwasów trikarboksylowych jest przemianą amfiboliczną, czyli zarówno: Kataboliczną jak i Anaboliczną
Związki z wielu przemian są katabolizowane lub przekształcane w cyklu cytrynianowym
Cykl cytrynianowy jako źródło prekursorów szlaków biosyntezy
Regulacja cyklu cytrynianowego Regulacja tego cyklu odbywa się zarówno na wejściu jak i na poziomie samego cyklu. „Paliwo” dla tej przemiany wchodzi głównie pod postacią acetylo-CoA. Pochodzi on ze wszystkich trzech szlaków katabolicznych: lipidów, węglowodanów, aminokwasów. Jednak najistotniejszym jest źródło węglowodanowe, czyli kompleks dehydrogenazy pirogronianowej. PDH jest hamowana przez wysokie stężenia acetylo-CoA i NADH, aktywowana przez wolny CoA (CoASH) and NAD+. Mechanizm tej regulacji polega na użyciu odpowiedniej kinazy i fosfatazy. Fosforylacja PDH hamuje aktywność kompleksu, prowadząc do obniżenia tempa utleniania pirogronianu. PDH kinaza jest aktywowana przez NADH i acetyl-CoA,a hamowana przez pirogronian, ADP, CoASH, Ca2+i Mg2+. PDH fosfataza, jest aktywowana jonami Mg2+i Ca2+.