1 / 5

Bevis for f’ for ln(x) og vha omvendte funktioner

Bevis for f’ for ln(x) og vha omvendte funktioner. f(x) = ln(x) f’(x) =. Følgende forudsættes kendt: Dvs. en funktion sammensat med sin omvendte funktion giver x (Altså fx 1. x+2-2=x 2. = x) Formlen for diff af sammensat funktion: (f(g(x))’ = f’(g(x))*g’(x)

Download Presentation

Bevis for f’ for ln(x) og vha omvendte funktioner

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Bevis for f’ for ln(x) og vha omvendte funktioner

  2. f(x) = ln(x) f’(x) = Følgende forudsættes kendt: Dvs. en funktion sammensat med sin omvendte funktion giver x (Altså fx 1. x+2-2=x 2. = x) Formlen for diff af sammensat funktion: (f(g(x))’ = f’(g(x))*g’(x) Omvendte funktion til ln(x) =

  3. Bevis for diff af ln(x) • Vi ved: , så: =x Begge sider differentieres *(ln(x)’ = 1 På venstre side benyttes formel for diff af sammensat funktion x*(ln(x)’ = 1 Første del giver stadig x, så (ln(x))’ = Der divideres med x på begge sider Hermed bevist, at f(x) = ln(x) f’(x) =

  4. f(x) = f’(x) = Følgende forudsættes kendt: Dvs. en funktion sammensat med sin omvendte funktion giver x (Altså fx 1. x+2-2=x 2. = x) Formlen for diff af sammensat funktion: (f(g(x))’ = f’(g(x))*g’(x) Omvendte funktion til =

  5. Bevis for diff af • Vi ved: , så: = x Begge sider differentieres 2= 1 På venstre side benyttes formel for diff af sammensat funktion = Der divideres med 2 på begge sider Hermed bevist, at f(x) = f’(x) =

More Related