440 likes | 535 Views
MATIÈRE 16-9-2014. Les images du rayonnement solaire réfléchie (suite et fin) Les images thermiques. Images du rayonnement solaire réfléchi (suite et fin). Signatures spectrales, bandes spectrales et couleur. Signature spectrale et couleur normale. Signature spectrale et couleur normale.
E N D
MATIÈRE 16-9-2014 Les images du rayonnement solaire réfléchie (suite et fin) Les images thermiques
Images du rayonnement solaire réfléchi (suite et fin) • Signatures spectrales, bandes spectrales et couleur
Bande bleue Bande verte Bande rouge Bande PIR FILTRE Formation d’images couleur: imagerie multispectrale
Bande bleue Bande verte Bande rouge Bande PIR FILTRE Formation d’images couleur: imagerie multispectrale
Un petit quiz: trouvez les bandes bleue, vert, rouge en sachant la couleur des objets
Les images thermiques • Les lois physiques d’émission • L’émission des corps réels • Rayonnement solaire et la température des objets
Transfert radiatif • Émission du rayonnement par les objets • Rayonnement secondaire par l’atmosphère réfléchi par la surface • Passage par l’atmosphère • Détection
1. Les lois physiques • Tout objet à une température supérieure au zéro absolu émet du RÉM • Pour étudier l’émission nous avons recours à un objet idéalisé: le corps noir • Un corps noir a la propriété d’absorber toute l’énergie reçue par une source externe et de l’émettre à l’espace ambiant d’une façon isotrope
Loi de Planck : exitance spectrale [W m-2 µm-1] où c1 = 3,742 x 10-16 [W m2] c2 = 1,439 x 10-2 [m K] T = la température cinétique du corps noir (en K) Loi de Stefan-Boltzman Corps noir à une Température T (K) Densité du flux total émis: M = T4 [ W m-2] où = la constante de Stefan-Boltzmann=5,669 x 10-8 [W m-2 K-4] La loi de déplacement de Wien Longueur d’onde du pic d’émission d’un corps noir à une Température T (K) C = 2898 [μm K] 1. Émission du corps noir
Rayonnement émis • Rayonnement spectrale émis par divers corps noirs incluant la terre et le soleil. Calculs – Loi de Planck • Selon la loi de S.-B. T croissant donc M croissant • Selon la loi de Wien T croissant donc longueur d’onde du pic d’émission décroissant
Émission vs température: exemple Une ampoule éteinte [à une température ambiante de 27°C (300 Kelvin)] n’émet pas du rayonnement visible, tandis qu’une ampoule dont l’élément est chauffé à 677°C (950 Kelvin) émet la plupart de son énergie dans l’infrarouge moyen et un tout petit peu dans le visible (lumière rouge). Une ampoule incandescente [2223°C (2500 Kelvin)] donne une lumière orangée jaune, bien que seulement 10% de son énergie est émis dans le visible, le reste est émis dans l’infrarouge, et perçu par nous comme de la chaleur
Loi de Wien: exemples un feu de forêt à 800 K alors pic d’émission à 2898/800 3,6 μm le soleil est à 6000 K environ alors pic d’émission à 2898/5700 0,5 μm μm où C = 2898 [μm K]
1. Émission par les objets terrestres • Les objets terrestres ne sont pas de corps noirs; la quantité du rayonnement émis par longueur d’onde est moindre de celle prescrit par la loi de Planck. • Pour décrire leur émission on introduit une quantité, l’émissivité, qui nous indique la différence entre l’exitance spectrale de l’objet réel et celle du corps noir à la même température cinétique:
1. Émission par les objets terrestres Échantillon de calcaire; sa surface fait 10 cm2 • L’émissivité toujours <1 • Si l’émissivité demeure constante peu importe la longueur d’onde nous disons que l’objet se comporte comme un corps gris • La majorité des objets terrestres ont plutôt une émissivité variable selon la longueur d’onde, on parle alors d’un radiateur sélectif
1. Émission par les objets terrestres • Émissivité spectrale d’un corps noir, d’un corps gris et d’un radiateur sélectif hypothétique • Exitance spectrale d’un corps noir, d’un corps gris et d’un radiateur sélectif hypothétique à la même température cinétique
1. Émission par les objets terrestres: une première conclusion • L’exitance spectrale d’un corps réel dépend de sa température cinétique, et de son émissivité à la longueur d’onde examinée. • En termes pratiques: si l’on mesure l’exitance spectrale d’un objet on peut déduire sa température cinétique seulement si l’on connaît son émissivité spectrale. • Est-ce donc possible d’utiliser un capteur de télédétection pour estimer la température des objets au sol? Pour répondre à cette question reprenons les choses du début
Le cycle diurne des températures • Comme le soleil est la source principale du rayonnement qu’un corps puisse absorber, les températures des objets suivent le cycle diurne de l’apport énergétique du soleil à la surface, mais chacun à son propre rythme selon sa composition, sa densité, le taux d’humidité etc.
Le cycle diurne des températures • Avant le lever du soleil, l’air (1), la végétation- les Ohias (sorte d’arbre en Hawaï) (2), la route (3) et le basalte ancien (4) gardent une température uniforme. Dès l’aube, vers 7 heures, l’air, la route et le basalte marquent une augmentation rapide de leur température par réchauffement; la reprise de l’activité biologique des plantes se manifeste par un accroissement de leur température suivie d’un palier.
Le cycle diurne des températures • Un autre exemple: observations in situ
Le rôle de l’atmosphère • Similaire aux images du rayonnement solaire réfléchi (vapeur d’eau importante comme absorbeur + moindres les effets de brume atmosphérique) • Les nuages objets opaques
Les capteurs • Balayeurs à époussette jusqu’à tout récemment les seuls à pouvoir générer d’images thermiques • Balayeurs à râteau de plus en plus le standard
Les images du rayonnement émis: exemples Sensibilité spectrale Mono-spectrale: Landsat-7 ETM6 : résolution spatiale 60 m x 60 m (Attention Landsat-5 TM6 120 m x 120 m)
ASTER (satellite TERRA) - un exemple d’un système de capteurs polyvalent Infrarouge thermique 5 bandes spectrales
Les images du rayonnement émis: les images TIR (5 bandes) d’ASTER ASTER: VIS IRT
Pollution thermique des milieux aquatiques Centrale nucléaire Salem sur les rives de Delaware
Marée ascendante émissaire Baie à protéger 8:00 h • Est que le panache thermique peut causer de dommages à la baie? • Mouvement de la marée • Une hausse de la température de l’eau à l’intérieur de la Baie > 10 C n’est pas tolérable Marée basse 5:59 h Marée descendante Centrale thermique 14:20 h Marée haute Thermographies prises par le capteur aéroporté DEADALUS en hiver (deux jours consécutives) 10:59 h
Pollution thermique des milieux aquatiques Centrale nucléaire Salem sur les rives de Delaware
Applications - Exemple 1: Pollution thermique des milieux aquatiques Image thermique réorientée (corrections géométriques) et mise à la même échelle que l’image couleur