1 / 8

Conceptos básicos

Tema 19: Contraste no paramétrico de hipótesis: Conceptos básicos. Verificación de los supuestos. Pruebas de aleatorización. Pruebas de contraste para un grupo. Pruebas de contraste para dos grupos independientes y relacionados. Pruebas para más de dos grupos independientes y relacionados.

herne
Download Presentation

Conceptos básicos

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Tema 19: Contraste no paramétrico de hipótesis:Conceptos básicos. Verificación de los supuestos. Pruebas de aleatorización. Pruebas de contraste para un grupo. Pruebas de contraste para dos grupos independientes y relacionados. Pruebas para más de dos grupos independientes y relacionados.

  2. Conceptos básicos Hasta ahora hemos estudiado las llamadas "pruebas paramétricas", en las que habrás observado que había en cada una de ellas una serie de supuestos estadísticos más o menos severos. Además, las "pruebas paramétricas" que hemos visto (sobre la media o sobre la varianza) requerían que la variable se midiera (como mínimo) en escalas de intervalo --recuerda que precisaban el cálculo de medias o varianzas. Ello hace que no sea posible efectuarlas cuando la escala sea ordinal. Por su parte, las pruebas no paramétricas pueden ser efectuadas cuando el nivel de medida sea ordinal, así como las condiciones de los supuestos estadísticos (v.g., homogeneidad de varianzas, normalidad de las puntuaciones) son menos estrictas.

  3. Conceptos básicos Veremos CUATRO pruebas no paramétricas, que en buena medida son paralelas a las vistas en temas anteriores (pero en versión no paramétrica): Caso de dos grupos independientes Prueba de Mann-Whitney-----(paralela a la t de grupos independientes) Caso de dos grupos relacionados Prueba de Wilcoxon-----(paralela a la t de grupos relacionados) Casi de "a" grupos independientes Prueba de Kruskal-Wallis-----(paralela a la F unifactorial entre-sujetos) Caso de "a" grupos relacionados Prueba de Friedman----(paralela a la F unifactorial intra-sujetos) Evidentemente, hay más pruebas no paramétricas (ver el SPSS, en el Menú de Analizar-Pruebas_no_paramétricas).

  4. Prueba de Mann-Whitney (comparación de dos grupos independientes) Es la prueba no paramétrica paralela a la t de dos grupos independientes Pasos: 1. pasar las puntuaciones a rangos (conjuntamente en los dos grupos) 2. computar la suma de los rangos del grupo 1 Muestras pequeñas (n1 y n2  20) Hay tablas para este caso de muestras pequeñas; en todo caso, si la muestra es relativamente grande, se puede efectuar la aproximación a la distribución normal (U es la suma de los rangos asignados a la muestra 1) Muestras grandes La hipótesis nula es que no haya diferencias entre los dos grupos

  5. Prueba de Wilcoxon (comparación de dos grupos relacionados) Es la prueba no paramétrica paralela a la t de dos grupos relacionados Pasos: 1. Restar las puntuaciones (sujeto a sujeto) entre grupos 1 y 2, y dejarlas en valor absoluto. 2. En valores ordinales, hacer una columna con los rangos para G2>G1 y otra para G1>G2 (ver ejemplo) Muestras pequeñas Hay tablas para este caso de muestras pequeñas; en todo caso, si la muestra es relativamente grande, se puede efectuar la aproximación a la distribución normal Es la suma de rangos de la columna "G2>G1" Muestras grandes La hipótesis nula es que no haya diferencias entre los dos grupos

  6. Prueba de Kruskal-Wallis (comparación de "a" grupos independientes) Es la prueba no paramétrica paralela a la F unifactorial entre-sujetos Pasos: 1. pasar las puntuaciones a rangos (conjuntamente en los "a" grupos) 2. computar la suma de los rangos en cada grupo (son las Rj) Estadístico de contraste Si la Hipótesis nula es cierta (es decir, que no haya diferencias entre los grupos), H se distribuye según chi-cuadrado con a-1 grados de libertad Observa que se puede aplicar esta prueba cuando no se cumplan los supuestos de homogeneidad de varianzas ni el de normalidad del ANOVA unifactorial entresujetos.

  7. Prueba de Friedman (comparación de "a" grupos relacionados) Es la prueba no paramétrica paralela a la F unifactorialintra-sujetos Pasos: 1. pasar las puntuaciones a rangos (atención: rangosdentro de cada sujeto) 2. computar la suma de los rangos en cada grupo (son las Rj) Estadístico de contraste Si la Hipótesis nula es cierta (es decir, que no haya diferencias entre los grupos), este estadístico de contraste se distribuye según chi-cuadrado con a-1 grados de libertad

  8. El tema de los empates Dado que estamos ordenando los datos, es posible el caso de los empates entre puntuaciones. Hay algunas correcciones para ello, pero que no vamos a ver.

More Related