190 likes | 356 Views
El ramo de flores. XXVIII Olimpiada Thales. EL RAMO DE FLORES: El día 14 del mes pasado fue el día de los enamorados y por dicho motivo encargué un magnífico ramo de flores para mi novia Eulerina. El ramo me costó 68 € y estaba formado por petunias y orquídeas.
E N D
El ramo de flores XXVIII Olimpiada Thales
EL RAMO DE FLORES: El día 14 del mes pasado fue el día de los enamorados y por dicho motivo encargué un magnífico ramo de flores para mi novia Eulerina. El ramo me costó 68 € y estaba formado por petunias y orquídeas. Recuerdo que el precio de cada petunia era de 0,5 € y en el ramo había 16; pero no llego a recordar cuál era el precio de una orquídea, aunque sé que éste no tenía céntimos y no era múltiplo de 5. Ayuda a este joven enamorado calculando cuál era el precio de cada orquídea y cuántas había en el ramo, si sabemos que al sumar ambas cantidades se obtiene un número que tiene una cantidad impar de divisores. Razona las respuestas. Solución Menú
Solución: Parece que está claro cuánto costaron las petunias y cuánto costaron las orquídeas… Enunciado Menú
Solución: 0,5 euros/petunia · 16 petunias = 8 euros Luego las orquídeas costaron: 68 – 8 = 60 euros Debemos calcular el número de orquídeas y el precio de cada una Enunciado Menú
Solución: Llamemos, por ejemplo, n = nº de orquídeas y x = precio de cada orquídea y analicemos los posibles valores que pueden tomar n y x, teniendo en cuenta que n·x = 60 … Enunciado Menú
n = nº de orquídeas x = precio de las orquídeas x = número entero y no múltiplo de 5 x+n tiene un nº impar de divisores Solución: Mejor ir con orden para no dejarnos nada atrás… Enunciado Menú
n = nº de orquídeas x = precio de las orquídeas x = número entero y no múltiplo de 5 x+n tiene un nº impar de divisores Solución: Mejor ir con orden para no dejarnos nada atrás… • x = 1 n = 60 Descartado porque x+n tendría 2 divisores Enunciado Menú
n = nº de orquídeas x = precio de las orquídeas x = número entero y no múltiplo de 5 x+n tiene un nº impar de divisores Solución: Mejor ir con orden para no dejarnos nada atrás… • x = 1 n = 60 Descartado porque x+n tendría 2 divisores • x = 2 n = 30 Descartado porque x+n tendría 6 divisores Enunciado Menú
n = nº de orquídeas x = precio de las orquídeas x = número entero y no múltiplo de 5 x+n tiene un nº impar de divisores Solución: Mejor ir con orden para no dejarnos nada atrás… • x = 1 n = 60 Descartado porque x+n tendría 2 divisores • x = 2 n = 30 Descartado porque x+n tendría 6 divisores • x = 3 n = 20 Descartado porque x+n tendría 2 divisores Enunciado Menú
n = nº de orquídeas x = precio de las orquídeas x = número entero y no múltiplo de 5 x+n tiene un nº impar de divisores Solución: Mejor ir con orden para no dejarnos nada atrás… • x = 1 n = 60 Descartado porque x+n tendría 2 divisores • x = 2 n = 30 Descartado porque x+n tendría 6 divisores • x = 3 n = 20 Descartado porque x+n tendría 2 divisores • x = 4 n = 15 Descartado porque x+n tendría 2 divisores Enunciado Menú
n = nº de orquídeas x = precio de las orquídeas x = número entero y no múltiplo de 5 x+n tiene un nº impar de divisores Solución: Mejor ir con orden para no dejarnos nada atrás… • x = 1 n = 60 Descartado porque x+n tendría 2 divisores • x = 2 n = 30 Descartado porque x+n tendría 6 divisores • x = 3 n = 20 Descartado porque x+n tendría 2 divisores • x = 4 n = 15 Descartado porque x+n tendría 2 divisores • x = 5 n = 12 Descartado porque x no puede ser múltiplo de 5 Enunciado Menú
n = nº de orquídeas x = precio de las orquídeas x = número entero y no múltiplo de 5 x+n tiene un nº impar de divisores Solución: Mejor ir con orden para no dejarnos nada atrás… • x = 1 n = 60 Descartado porque x+n tendría 2 divisores • x = 2 n = 30 Descartado porque x+n tendría 6 divisores • x = 3 n = 20 Descartado porque x+n tendría 2 divisores • x = 4 n = 15 Descartado porque x+n tendría 2 divisores • x = 5 n = 12 Descartado porque x no puede ser múltiplo de 5 • x = 6 n = 10 Cumple las condiciones del enunciado Enunciado Menú
n = nº de orquídeas x = precio de las orquídeas x = número entero y no múltiplo de 5 x+n tiene un nº impar de divisores Solución: Mejor ir con orden para no dejarnos nada atrás… • x = 1 n = 60 Descartado porque x+n tendría 2 divisores • x = 2 n = 30 Descartado porque x+n tendría 6 divisores • x = 3 n = 20 Descartado porque x+n tendría 2 divisores • x = 4 n = 15 Descartado porque x+n tendría 2 divisores • x = 5 n = 12 Descartado porque x no puede ser múltiplo de 5 • x = 6 n = 10 Cumple las condiciones del enunciado • x = 10 n = 6 Descartado porque x no puede ser múltiplo de 5 Enunciado Menú
n = nº de orquídeas x = precio de las orquídeas x = número entero y no múltiplo de 5 x+n tiene un nº impar de divisores Solución: Mejor ir con orden para no dejarnos nada atrás… • x = 1 n = 60 Descartado porque x+n tendría 2 divisores • x = 2 n = 30 Descartado porque x+n tendría 6 divisores • x = 3 n = 20 Descartado porque x+n tendría 2 divisores • x = 4 n = 15 Descartado porque x+n tendría 2 divisores • x = 5 n = 12 Descartado porque x no puede ser múltiplo de 5 • x = 6 n = 10 Cumple las condiciones del enunciado • x = 10 n = 6 Descartado porque x no puede ser múltiplo de 5 • x = 12 n = 5 Descartado porque x+n tendría 2 divisores Enunciado Menú
n = nº de orquídeas x = precio de las orquídeas x = número entero y no múltiplo de 5 x+n tiene un nº impar de divisores Solución: Mejor ir con orden para no dejarnos nada atrás… • x = 1 n = 60 Descartado porque x+n tendría 2 divisores • x = 2 n = 30 Descartado porque x+n tendría 6 divisores • x = 3 n = 20 Descartado porque x+n tendría 2 divisores • x = 4 n = 15 Descartado porque x+n tendría 2 divisores • x = 5 n = 12 Descartado porque x no puede ser múltiplo de 5 • x = 6 n = 10 Cumple las condiciones del enunciado • x = 10 n = 6 Descartado porque x no puede ser múltiplo de 5 • x = 12 n = 5 Descartado porque x+n tendría 2 divisores • x = 15 n = 4 Descartado porque x no puede ser múltiplo de 5 Enunciado Menú
n = nº de orquídeas x = precio de las orquídeas x = número entero y no múltiplo de 5 x+n tiene un nº impar de divisores Solución: Mejor ir con orden para no dejarnos nada atrás… • x = 1 n = 60 Descartado porque x+n tendría 2 divisores • x = 2 n = 30 Descartado porque x+n tendría 6 divisores • x = 3 n = 20 Descartado porque x+n tendría 2 divisores • x = 4 n = 15 Descartado porque x+n tendría 2 divisores • x = 5 n = 12 Descartado porque x no puede ser múltiplo de 5 • x = 6 n = 10 Cumple las condiciones del enunciado • x = 10 n = 6 Descartado porque x no puede ser múltiplo de 5 • x = 12 n = 5 Descartado porque x+n tendría 2 divisores • x = 15 n = 4 Descartado porque x no puede ser múltiplo de 5 • x = 20 n = 3 Descartado porque x no puede ser múltiplo de 5 Enunciado Menú
n = nº de orquídeas x = precio de las orquídeas x = número entero y no múltiplo de 5 x+n tiene un nº impar de divisores Solución: Mejor ir con orden para no dejarnos nada atrás… • x = 1 n = 60 Descartado porque x+n tendría 2 divisores • x = 2 n = 30 Descartado porque x+n tendría 6 divisores • x = 3 n = 20 Descartado porque x+n tendría 2 divisores • x = 4 n = 15 Descartado porque x+n tendría 2 divisores • x = 5 n = 12 Descartado porque x no puede ser múltiplo de 5 • x = 6 n = 10 Cumple las condiciones del enunciado • x = 10 n = 6 Descartado porque x no puede ser múltiplo de 5 • x = 12 n = 5 Descartado porque x+n tendría 2 divisores • x = 15 n = 4 Descartado porque x no puede ser múltiplo de 5 • x = 20 n = 3 Descartado porque x no puede ser múltiplo de 5 • x = 30 n = 2 Descartado porque x no puede ser múltiplo de 5 Enunciado Menú
n = nº de orquídeas x = precio de las orquídeas x = número entero y no múltiplo de 5 x+n tiene un nº impar de divisores Solución: Mejor ir con orden para no dejarnos nada atrás… • x = 1 n = 60 Descartado porque x+n tendría 2 divisores • x = 2 n = 30 Descartado porque x+n tendría 6 divisores • x = 3 n = 20 Descartado porque x+n tendría 2 divisores • x = 4 n = 15 Descartado porque x+n tendría 2 divisores • x = 5 n = 12 Descartado porque x no puede ser múltiplo de 5 • x = 6 n = 10 Cumple las condiciones del enunciado • x = 10 n = 6 Descartado porque x no puede ser múltiplo de 5 • x = 12 n = 5 Descartado porque x+n tendría 2 divisores • x = 15 n = 4 Descartado porque x no puede ser múltiplo de 5 • x = 20 n = 3 Descartado porque x no puede ser múltiplo de 5 • x = 30 n = 2 Descartado porque x no puede ser múltiplo de 5 • x = 60 n = 1 Descartado porque x no puede ser múltiplo de 5 Enunciado Menú
n = nº de orquídeas x = precio de las orquídeas x = número entero y no múltiplo de 5 x+n tiene un nº impar de divisores Solución: Luego… • x = 6 n = 10, es decir… • Las orquídeas costaron 6 euros la unidad y el ramo tenía 10 orquídeas Enunciado Menú