1 / 19

Pruning Dynamic Slices With Confidence

Pruning Dynamic Slices With Confidence. Xiangyu Zhang Neelam Gupta Rajiv Gupta The University of Arizona. Dynamic Slicing. …… 10. A = …... 20. B = …… 30. P = 31. If (P<0) { ...... 35. A = A + 1 36. } 37. B=B+1 …… 40. Error(A).

Download Presentation

Pruning Dynamic Slices With Confidence

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Pruning Dynamic Slices With Confidence Xiangyu Zhang Neelam Gupta Rajiv Gupta The University of Arizona

  2. Dynamic Slicing …… 10. A = …... 20. B = …… 30. P = 31. If (P<0) { ...... 35. A = A + 1 36. } 37. B=B+1 …… 40. Error(A) Dynamic slice is the set of statements that did affect the value of a variable at a program point for aspecific program execution. [Korel and Laski, 1988] Dynamic Slice (A@40) = {10, 30, 31, 35, 40}

  3. Effectiveness of Dynamic Slicing Dynamic slicing is very effective in containing the faulty statement, however it usually produces over-sized slices -- [AADEBUG’05]. Problem: How to automatically prune dynamic slices? Approaches: • Coarse-grained pruning by intersecting multiple types (backward, forward, bidirectional) of dynamic slices --[ASE’05, ICSE’06] • Fine-grained pruning of a backward slice by using confidence analysis -- this paper.

  4. input0 input_x input2 predicate_x output0 output1 output_x output_x predicate_x Types of Evidence Used in Pruning Buggy Execution • Classical dynamic slicing algorithms investigate bugs through the evidence of thewrong output • Other types of evidence: • Failure inducing input [ASE’05] • Critical Predicate [ICSE’06] • Partially correct output -- this paper • Benefits of more evidence • Narrow the search for faulty stmt. • Broaden the applicability

  5. BiS(CP) FS(CP) BS^FS BS + CP Coarse-grained Pruning by Intersecting Slices failure inducing input FS

  6. Fine-grained Pruning by Exploiting Correct Outputs • Correct outputs produced in addition to wrong output. • BS(Owrong) – BS (Ocorrect) is problematic. …… 10. A = 1 (Correct: A=3) …... 20. B = A % 2 …… 30. C = A + 2 …… 40. Print (B) 41. Print (C) BS(C@41)= {10, 30, 41} BS(B@40)= {10, 20, 40} BS(C@41)-BS(B@40) = {30,41}

  7. n • Value produced at node n can reach only wrong output nodes ? n n • Value produced at node n can reach both the correct and wrong output nodes. Should we include n in the slice? Confidence Analysis n • Value produced at n can reach only correct outputs There is no evidence of incorrectness of n. Therefore it cannot be in the slice. Confidence(n)=1 There is no evidence that n is correct, so it should be in the pruned slice. Confidence(n)=0 Confidence(n)=?; 0 ≤ ? ≤ 1

  8. Value(n) = b Value(n) = c n n Confidence Analysis Range(n)={ a, b, c, d, e, f, g } Value(n) = a • Alt(n) is a set of possible values of the variable defined by n, that when propagated through the • dynamic dependence graph, produce the same values for correct outputs. Alt(n)={ a } , c • When |Alt(n)|==1, we have the highest confidence (=1) on the correctness of n; • When |Alt(n)|==|Range(n)|, we have the lowest confidence (=0). • |Range(n)|>= |Alt(n)|>=1

  9. Confidence Analysis: Example …… 10. A = ... …... 20. B = A % 2 …… 30. C = A + 2 …… 40. Print (B) 41. Print (C)

  10. Confidence Analysis: Two Problems • How to decide the Range of values for a node n? • Based on variable type (e.g., Integer). • Static range analysis. • Our choice: • Dynamic analysis based on value profiles. • Range of values for a statement is the set of values defined by all of the execution instances of the statement during the program run. • How to compute Alt(n)? • Consider the set of correct output values as constraints. • Compute Alt(n) by backward propagation of constraints through the dynamic dependence subgraph corresponding to the slice.

  11. (T,...)= (1,...)(3,...)(5,...)(8,...) (9,...) (Y,T)=(0,3) (0,9)(1,1) (2,5) (2,8) (X,T)= (6,5) (9,8) (10,9) Computing Alt(n) Along Data Dependence alt(S1) = alt(T@S2) ∩ alt (T@S3) = {9} S1: T=... 9 alt(T@S2)={9} alt(T@S3)={1,3,9} S2: X=T+1 10 S3: Y=T%3 0 alt(S2)={10} alt(S3)={0,1}

  12. Computing Alt(n) Along Control Dependence alt(S1) = {True} S1: if (P) … True S2: X=T+1 10 S3: Y=T%3 0 alt(S2)={10} alt(S3)={0,1} (Y,T)=(0,3) (0,9)(1,1) (2,5) (2,8) (X,T)= (6,5) (9,8) (10,9)

  13. Characteristics of Siemens Suite Programs • Each faulty version has a single manually injected error. • All the versions are not included: • No output is produced. • Faulty statement is not contained in the backward slice. • For each version three tests were selected.

  14. On average, PDSmax = 41.1% of DS Results of Pruning

  15. Confidence Based Prioritization DD – dep. distance CV – confidence values Executed statement instances examined (%)

  16. The Potential of Confidence Analysis (1) • Case Study (replace v14) • 88  74  23 Buggy Code Pruned Slices Dynamic Slicer With Confidence Input User Verified Statements as correct

  17. The Potential of Confidence Analysis (2) • Relevant slicing (gzip v3 run r1) Potential dep. Data dep.

  18. Conclusions • We have presented a new approach - Confidence analysis - that exploits the correct output values produced in an execution to prune the dynamic slice of an incorrect output. • We have developed a novel dynamic analysis based implementation of confidence analysis, which effectively pruned backward dynamic slices in our experiments. • Pruned Slices = 41.1% Dynamic Slices, and still contain the faulty statement. • Our study shows that confidence analysis has additional applications beyond pruning – prioritization, interactive pruning & relevant slicing.

  19. The End

More Related