180 likes | 278 Views
Aula Teórica. Séries de Taylor e resolução numérica da equação de advecção - difusão. Equações que vamos resolver. Conservação da massa : Num modelo Hidrodinâmico também a equação de Transporte de Quantidade de Movimento :. Como se resolvem as equações. Métodos Numéricos :
E N D
Aula Teórica Séries de Taylor e resolução numérica da equação de advecção - difusão
Equações que vamos resolver • Conservação da massa: • Num modeloHidrodinâmicotambém a equação de Transporte de Quantidade de Movimento:
Como se resolvem as equações • MétodosNuméricos: • Diferençasfinitas/Volumes finitos • ElementosFinitos/Elementos de fronteira. • Como se constrói o método das diferençasfinitas? • Série de Taylor:
O que representa a série de Taylor? c Outras derivadas Δc Δc 1ª Derivada: Δc/ Δt Δt t t1 t1+Δt
Como usarparacalcular as derivadas? Método Explícito: A derivada é calculada à esquerda “em t” e tem precisão de 1ª ordem, ou seja, as derivadas que foram ignoradas estão multiplicadas por Isto significa que o erro do cálculo aumenta quando o passo de tempo aumenta.
Mas poderia ter feito calculado a derivada à direita Método Implícito: A derivada é calculada à direita “em t+dt” e tem precisão de 1ª ordem, ou seja, todas as derivadas que foram ignoradas estão multiplicadas por Isto significa que o erro do cálculo aumenta quando o passo de tempo aumenta. Os métodos implícitos e explícitos têm a mesma precisão.
Para calcular a derivada no centro do intervalo teria que calcular os valores nos extremos a partir daquele Subtraindo uma da outra: Neste método a derivada é calculada no centro do intervalo de tempo e tem precisão de 2ª ordem. Dá a solução exacta até uma evolução parabólica. As derivadas ignoradas estão multiplicadas por
O que representa a série de Taylor? c Método Explícito Método Implícito Outras derivadas 1ª Derivada: Δc/ Δt Δc Δt MétodoDiferençasCentrais t t1 t1+Δt
Derivadas espaciais Derivada à direita, Método downwind, se velocidadepositiva Neste método a derivada espacial num ponto é calculada a partir da informação no ponto e da informação à direita. Veremos mais adiante que este cálculo cria problemas se esta derivada for usada para calcular o termo advectivo quando a velocidade é positiva.
Derivadas espaciais Derivada à esquerda, Métodoupwind se velocidadepositiva. Neste método a derivada espacial num ponto é calculada a partir da informação no ponto e da informação à esquerda. Veremos mais adiante que este cálculo cria problemas se esta derivada for usada para calcular o termo advectivo quando a velocidade é positiva.
Subtraindo uma equação da outra DiferençasCentrais
2ª Derivada Adicionando:
Equações Algébricas • Obtêm-se substituindo as derivadaspelasaproximações: • Explícito, diferençascentrais. Precisão de 2ª ordem no espaço e 1ª no tempo. • Semi-implícito (Crank-Nicholson) diferençascentraisespaço. Precisão de 2ª ordem no tempo e no espaço. O que se paga pela precisão de 2ª ordem no tempo?
Como se obtém o valor em (t+Δt/2) ?Fazendo a média….. • Adicionando as equações! • Substituindo estes termos nas equações obtém-se a equação a resolver
Explícito Upwind • Precisão de 1ª ordem no tempo e no espaçoparaadvecção. Segundaordemparadifusão. • Estaequaçãopode ser organizadana forma:
Forma geral da Equação K=1=> implícito. K=0 => Explicito, k=0.5=> Crank-Nicholson: Explicito, upwind: Números de Courant e de Difusão
Sobre a precisão do cálculo • No cálculo implícito e no cálculo explícito as derivadas são calculadas nos extremos do intervalo de tempo. Estes métodos ignoram todas as derivadas a partir da primeira: têm precisão de primeira ordem ou “até à primeira ordem”. • Os termos da série de Taylor ignorados estão multiplicados por • Quando a derivada é calculada no centro do intervalo de tempo as derivadas só são ignoradas a partir da segunda. São métodos com precisão de 2ª ordem, ou “até à 2ª ordem”. Se a função for uma recta ou uma parábola o cálculo da derivada é exacto. • Os termos da série de Taylor ignorados estão multiplicados por • Mas >1 então quanto maior é a ordem de precisão do cálculo, maior é o coeficiente dos termos ignorados. Porque é que a precisão do cálculo aumenta?
Porque aumenta a precisão com o expoente de ? Porque os termos ignorados são da forma: O cálculo da derivada faz aparecer em denominador o intervalo de tempo elevado n e o coeficiente está elevado a (n-1) e por isso o produto é proporcional a ou seja à primeira derivada multiplicada pelo inverso do factorial de n e por isso quanto maior é o valor do expoente do intervalo de tempo, menor é o valor dos temos desprezados. Esta conclusão é consistente como facto de as derivadas perderem importância à medida que a ordem aumenta.