1 / 46

Diffusion Tensor Processing with Log-Euclidean Metrics

Diffusion Tensor Processing with Log-Euclidean Metrics. Vincent Arsigny, Pierre Fillard, Xavier Pennec, Nicholas Ayache. Friday, September 23 rd , 2005. What are ‘Tensors’?. In general : any multilinear mapping. E.g. a vector, a matrix, a tensor products of vectors…

keaton-knox
Download Presentation

Diffusion Tensor Processing with Log-Euclidean Metrics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Diffusion Tensor Processing with Log-Euclidean Metrics Vincent Arsigny, Pierre Fillard, Xavier Pennec, Nicholas Ayache.Friday, September 23rd, 2005.

  2. What are ‘Tensors’? • In general: any multilinear mapping. E.g. a vector, a matrix, a tensor products of vectors… • In this talk: a symmetric, positive definite matrix. Typically: a covariance matrix (origin: DT-MRI) • A 3x3 tensor can be visualized with an ellipsoid. Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  3. Use of Tensors • Statistics: covariance matrices. Recently introduced in non-linear registration [Commowick, Miccai'05], [Pennec, Miccai'05]. • Image processing (edges, corner dectection, scale-space analysis...) [Fillard, DSSCV'05]. • Continuum mechanics : strain and stress tensors, etc. Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  4. [Alauzet, RR-4981], GAMMA project. Application to fluid mechanics. Use of Tensors • Generation of adapted meshes in numerical analysis for faster PDE solving(SMASH project): Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  5. Variability along sulci on the cortex and their extrapolation. Variability tensors • [Fillard, IPMI'05] Anatomical variability: local covariance matrix of displacement w.r.t. an average anatomy. Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  6. [Le Bihan, Nature rev. in Neurosc., 2003] Diffusion MRI (dMRI) • Water molecules diffuse in biological tissues. • MR images can be weighted with diffusion Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  7. Typical exemple, from a 1.5 Tesla scanner, 128x128x30, [Arsigny,RR-5584, 2005] Diffusion Tensor MRI • Simple Model: Brownian motion. • Diffusion Tensor: local covariance of diffusion process. • DT images: tensor-valued images. Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  8. Tensor Processing • Needs: interpolation, extrapolation, regularization, statistics... • Generalization to tensors of classical vector processing tools. • HOW?? Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  9. Outline • Presentation • Euclidean and Affine-Invariant Calculus • Log-Euclidean Framework • Experimental Results • Conclusions and Perspectives Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  10. Defects of Euclidean Calculus • Tensors are symmetric matrices. Euclidean operations can be performed. • simplicity • practically : unphysical negative eigenvalues appear very often Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  11. Interpolated tensors Interpolated tensors Interpolated volumes Defects of Euclidean Calculus • Typical 'swelling effect' in interpolation: • In DT-MRI: physically unacceptable ! Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  12. Remedies in the literature • Operations on features of tensors, propagated back to tensors: • dominant directions of diffusion [Coulon, IPMI’01] • orientations and eigenvalues separately [Tschumperlé, IJCV, 02, Chefd’hotel JMIV, 04] • Drawback: some information left behind. Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  13. Remedies in the literature • Specialized procedures: • Affine-invariant means based on J-divergence [Wang, TMI, 05] • Interpolation on tensors with structure tensors [Castagno-Moraga, MICCAI’04] • Etc. • Drawback: lack of general framework. Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  14. A Solution: Riemannian Geometry • General framework for curved spaces (e.g. rotations, affine transformations, diffeomorphisms, and more). • Allows for the generalization of statistics [Pennec, 98] or PDEs [Pennec, IJCV, 05]. • Idea: define a differentiable distance between tensors. Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  15. A Solution: Riemannian Geometry • A scalar product for each tangent space of the manifold. • Distance between 2 points: minimum of length of smooth curves joining them. Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  16. 2 P ( ) ( ) d E S S T i i t w a r g m n w s = i i i i i ; : ; T A Solution: Riemannian Geometry • Each metric induces a generalization of the arithmetic mean, called ‘Fréchet mean’. • The mean point minimizes a ‘metric dispersion’: Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  17. Choice of metric • Idea: rely on relevant/natural invariance properties • First proposition: affine-invariant metrics [Fletcher (CVAMIA’04), Lenglet (JMIV), Moakher (SIMAX), Pennec (IJCV), 04]. • Computations are invariant w.r.t. any (affine) change of coordinate system. Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  18. Affine-invariant metrics • Excellent theoretical properties: • no 'swelling effect' • non-positive eigenvalues at infinity • symmetry w.r.t. matrix inversion • High computational cost: lots of inverses, square roots, matrix exponential and logarithms... Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  19. = = 1 1 1 2 1 1 2 1 ¡ ¡ ³ ´ ¡ ¡ ( ) k ( ) k d l S S S S S ( ) l S S S S S 2 2 2 2 o g t = 1 2 2 e x p o g 1 1 ; : : 2 1 1 1 1 : : : : : t S S 2 1 Affine-invariant metrics • Distance between two tensors: • Geodesic between and (parameter ): Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  20. Beyond affine-invariant metrics • Quotations from [Pennec, RR-5255]: • “The main problem is that the tensor space is a manifold that is not a vector space” (page 5). • “Thus, the structure we obtain is very close to a vector space, except that the space is curved” (page 30). • Not a vector space with usual operations '+' and '.' Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  21. Outline • Presentation • Euclidean and Affine-Invariant Calculus • Log-Euclidean Framework • Experimental Results • Conclusions and Perspectives Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  22. A novel vector space structure • References: [Arsigny, Miccai’05], [Arsigny, RR-5584]. French patent pending. • The tensor space is a vector space with proper operations. • Idea: use one-to-one correspondence with symmetric matrices, via matrix logarithm and exponential. Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  23. ( ( ) ( ) ) l l S S S S ( ( ) ) ¸ ¸ l S S ¯ + ~ e x p o g o g = e x p o g 1 2 1 2 = 1 : A novel vector space structure • New 'addition', called 'logarithmic multiplication': • New 'logarithmic scalar multiplication': Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  24. Tensor Space Homogenous ManifoldStructure Vector SpaceStructure Algebraicstructures Metrics on Tensors Invariant metric Euclidean metric Affine-invariant metrics Log-Euclidean metrics Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  25. = = 1 2 1 2 ¡ ¡ ( ) k ( ) ( ) k ( ) k ( ) k d l l S S S S d l S S S S S ¡ o g o g o g = = 1 2 1 2 1 2 2 1 1 ; ; : : Distances • Log-Euclidean framework: • Affine-invariant framework: Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  26. 1 1 1 1 ³ ´ ¡ ¡ ( ( ) ( ) ( ) ) ( ) l l S S l S S S S S 2 2 2 2 1 t t t ¡ + e x p o g o g e x p o g 1 2 2 1 1 1 1 : : : : : : : Geodesics • Log-Euclidean case: • Affine-invariant case: Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  27. ³ ´ 2 2 ( ) ( ( ) ( ) ) d l l S S T S S i t ¡ s r a c e o g o g = ¸ 1 2 1 2 S S ; ! 7 Log-Euclidean metrics • Invariance properties: • Lie group bi-invariance • Similarity-invariance, for example with (Frobenius): • Invariance of the mean w.r.t. Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  28. Log-Euclidean metrics • Exactly like in the affine-invariant case: • no 'swelling effect' • non-positive eigenvalues at infinity • symmetry w.r.t. matrix inversion. • Practically, what differences between the two (families of ) metrics? Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  29. Log-Euclidean vs. affine-invariant • with DT images, very similar results. Identical sometimes. • Reason: associated means are two different generalizations of the geometric mean. • In both cases determinants are interpolated geometrically. Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  30. ( ( ) ) ( ( ) ) E E T S T S < r a c e r a c e A I L E ( ) ( ) h 6 E E S S w e n e v e r = A I L E Log-Euclidean vs. affine-invariant • Small difference: larger anisotropy in Log-Euclidean results. • (Theoretical) reason: inequality between the 'traces' of the Log-Euclidean and affine-invariant means: Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  31. Log-Euclidean vs. affine-invariant • On usual DT images, the Log-Euclidean framework provides: • simplicity: Euclidean computations on logarithms! • faster computations: means computed 20 times faster, computations at least 4 times faster in all situations. • larger numerical stability. Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  32. N = = ³ ´ ¡ ¢ 1 2 1 2 ¡ ¡ P ( ) ( ) N l E E S S S 0 P ( ) ( ) w o g w w l E S S = A I A I i i i i i i i 1 w e x p w o g ; : : ; : = L E i i i i = i 1 ; : = Log-Euclidean vs. affine-invariant • Log-Euclidean mean (explicit closed form): • Affine-invariant (Fréchet) mean (implicit barycentric equation): Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  33. Outline • Presentation • Euclidean and Affine-Invariant Calculus • Log-Euclidean Framework • Experimental Results • Conclusions and Perspectives Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  34. Euclidean Affine-invariant Log-Euclidean Synthetic interpolation • Typical example of linear interpolation: Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  35. Euclidean Affine-invariant Log-Euclidean Synthetic interpolation • Typical example of synthetic bilinear interpolation: Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  36. Original slice Euclidean Log-Euclidean Interpolation on real DT-MRI • Reconstruction by bilinear interpolation of a downsampled slice in mid-sagital plane: Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  37. Original data Noisy data Euclidean reg. Log-Euc. reg. Regularization of tensors • Anisotropic regularization on synthetic data: Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  38. Mean reconstruction error Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  39. [b] [a] [d] [c] Regularization of tensors 3D clinical DT image • [a] raw data • [b] Euclidean reg. • [c] Log-Euc. reg. • [d]Abs. difference (x100!) betweenLog-Euc. AndAffine-inv. Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  40. FA Gradient Regularization of tensors • Effect of anisotropicregularization on FractionalAnisotropy (FA)and gradient: Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  41. [a] [b] [c] Results from[Fillard, RR-5607] [a] Algebraic Tensor estimation on the logarithm of DWIs [b] Log-Euclidean Tensor estimation directly on DWIs [c] Log-Euclidean joint Tensor estimation and smoothing on DWIs Tensor Estimation Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  42. Fiber Tracking • Corticospinal tract reconstructions after classical estimation or Log-Euclidean joint estimation and smoothing [Fillard, RR-5607]. Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  43. Outline • Presentation • Euclidean and Affine-Invariant Calculus • Log-Euclidean Framework • Experimental Results • Conclusions and Perspectives Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  44. Conclusions • Log-Euclidean Riemannian framework: fast and simple. • Has excellent theoretical properties. • Effective and efficient for all usual types of processing on diffusion tensors. Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  45. Perspectives • In-depth evaluation/validation of existing Riemannian frameworks on tensors • Other relevant frameworks? • Log-Euclidean framework allows for straightforward statistics on diffusion tensors • Extension to more sophisticated diffusion models? Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

  46. Thank you for your attention! Any questions?

More Related