1 / 60

Konversationsanalys (CA), och kommunikationsreglering

Konversationsanalys (CA), och kommunikationsreglering. Pragmatik VT04 Staffan Larsson. Conversation Analysis. Etnologer: ”etnometdologi” Sacks, Schegloff, Jefferson Empiriska data audio (ofta telefonsamtal) video transkriptioner Empirisk metod

keith
Download Presentation

Konversationsanalys (CA), och kommunikationsreglering

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Konversationsanalys (CA), och kommunikationsreglering Pragmatik VT04 Staffan Larsson

  2. Conversation Analysis • Etnologer: ”etnometdologi” • Sacks, Schegloff, Jefferson • Empiriska data • audio (ofta telefonsamtal) • video • transkriptioner • Empirisk metod • Söker efter mönster i data och konstruerar regler för att förklara dessa • I motsats till traditionell lingvistik & pragmatik: intuitioner, filosofisk spekulation, ”armchair linguistics” • (Relativt) ickeformell metod

  3. Typer av mönster funna inom CA • makrostrukturer • Närhetspar (Adjacency pairs) • Preferensorganisation • Presekvenser (Pre-sequences) • ”local management systems”: lokal reglering (subdialoger) • Turtagning • Reparationer

  4. Närhetspar (adjacency pairs) • Sekvenser av 2 yttranden som är näraliggande och produceras av olika talare • Del 1 föregår del 2 • Dock ej nödvändigtvis direkt efter • Exempel • fråga-svar • hälsning-hälsning • erbjudande-accepterande • Liknar dialogspel • men annan metod • ej uttryckt i grammatikform; ”lösare” struktur • Approximativ regel: • Om A producerar den första delen i ett närhetspar, måste A sluta tala och B måste producera parets andradel • Alternativ regel: konditionell relevans • Om A producerar den första delen i ett närhetspar, så är dess andradel förväntad och relevant

  5. Preferensorganisation • Problem med närhetspar: • till varje förstadel svarar en mängd potentiella andradelar • T ex fråga -> • svar • protest • vidarebefodring (”Fråga Kalle”) • vägran att svara • ifrågasättande av ärlighet • Lösning: preferensorganistation • vissa andradelar är prefererade

  6. preferens är ej ett psykologiskt begrepp • utan relaterat till ”markedness” • prefererade andradelar är omärkta, ickeprefererade är märkta • Vanliga kännetecken på ickeprefererad andradel: • föregås av försening, tvekljud etc • inledningsord som makerar ickepreferens (”Well...”, ”Tja...”) • åtföljs av förklaring till varför prefererad andradel ej gavs • innehåller avböjande komponent • Exempel • A: Kan du hjälpa mig? • B1: visst (prefererat) • B2: Äh njae jag har lite mycket att göra just nu

  7. Pre-sekvenser • ”förberedande frågor” • Exempel 1 • T1 X: Är du upptagen ikväll? • T2a Y: Nä, hurså? • T3a X: Vill du följa med på bio? • Exempel 2 • T1 X: Är du upptagen ikväll? • T2b Y: Ja, jag ska tvätta håret. hurså? • T3b X: Äh det var inget särskilt? • T1 är en förberedande fråga som undersöker ett förvillkor till den handling som T3 gäller • T3 beror av T2, responsen på T1

  8. Turtagning • Observation: konversation karakteriseras av turtagning (A och B: talare) • A – B - A – B – A - ... • Hur åstadkoms denna organisation? • mindre än 5% överlapp • Med hjälp av ett ”Local Management System”! • en uppsättning regler • styr tillgång till ”the floor”, ung. rätten att tala

  9. Turtagning: begprepp • Tur (Turn Constructional Unit) • en sekvens av syntaktiska enheter vars gränser (främst) avgörs av syntaktiska (t ex satsgränser) eller prosodiska faktorer • TRP = Transition Relevance Place • en punkt där turtagning kan ske • TRP måste vara möjliga att förutse, för att smidig turtagning ska vara möjlig

  10. Regel 1: Gäller initialt vid första TRP i varje tur • (a) Om aktuell talare (A) väljer nästa talare (N) under sin tur, måste A sluta och N börja tala vid första TRP efter valet av N • (b) Om A inte väljer N så kan vem som helst ta turen vid nästa TRP (fri konkurrens) • (c) Om A inte väljer N och ingen annan ”självväljer” så kan A fortsätta • Regel 2: Gäller vid efterföljande TRP i en tur • När 1(c) har applicerats av A, så gäller 1(a)-(c) vid nästa TRP, och rekursivt vid efterföljande TRP, tills talarbyte inträffar

  11. Om någon bryter mot reglerna • den som avbryter kan bli förmål för kritik (”Låt mig tala till punkt!”) • ”tävling”: ökande volym, lägre tempo, förlängda vokaler, staccato etc. tills någon ger upp • Kritik mot denna modell • Tar ej hänsyn till ickeverbala signaler • Vad är en TRP mer exakt? • Ej universell • Tar ej hänsyn till • sociala roller & maktstrukturer • institutionella turtagningssystem (t ex formella möten, rättegång)

  12. Turtagning i dialogsystem • Strikt turtagning: • Så länge systemet talar så kan användaren inte säga något (systemet lyssnar inte) • Så länge användaren (utan paus) talar gör systemet inget; vid paus tar systemet över turn • ”Barge-in”: • Om användaren säger något då systemet talar så slutar systemet tala • Turtagning i dialog med flera deltagare, inklusive dialogsystem (Fredik Kronlid)

  13. Reparationer • Exempel • A: Jag mötte Nils igår TUR1 • B: Vem sa du? [NTRI] TUR2 • A: Nils TUR3 • Next Turn Repair Initiator (NTRI) • inbjuder till reparation av föregående tur • Typer av reparationer • Självinitierad, utan NTRI • Annan-initierad, med NTRI • Preferensordning • Självinitierad i TUR1 • Jag mötte Nils äh Kalle igår • Själviniterad efter TUR1 men före TUR2 • Jag mötte Nills igår. Äh Kalle mena ja • Annaninitierad med NTRI i TUR2, självreparation i T3 (se överst) • Annaniniterad annanreparation i T2 • A: Jag mötte Nils igår • B: Du menar väl Kalle?

  14. Grounding (Clark mfl) • Not CA, but related area • Common Ground (CG): shared knowledge about the dialogue; utterances incrementally add to CG • ”To ground a thing … is to establish it as part of common ground well enough for current purposes.” (Clark) • making sure that the participants are percieving, understanding, and accepting each other’s utterances • Grounding is regulated by local communication management systems (Allwood) • ICM: grounding, sequencing, turntaking • OCM: hesitations, self-corrections, ...

  15. Clark’s grounding model • Contribution types: Present, Accept • When does the presentation phase end? • I: Move the boxcar to Corning • I: and load it with oranges • R: ok S 1 Accept F Present

  16. Clark’s grounding model • Contribution types: Present, Accept • When does the presentation phase end? • I: Move the boxcar to Corning • R: ok • I: and load it with oranges • R: ok • Cannot be decided by just looking at the utterance; need to look at next utterance • not useful in realtime setting S 1 Accept F Present

  17. Traum’s grounding model • Discourse Units (DUs) • unit of conversation at whicgh grounding takes place • composed of individual utterance-level actions (grounding-level acts, sub-DU acts) • Some (sub-DU) acts • Initiate • Continue • Ack(nowledge) • Repair: correcting oneself or the other • Cancel: retraction, makes DU ungroundable (”Äh förresten det var inget”)

  18. act(I/R); I=initiator, R=responder • This model is supplemented with an information state update model Continue(I) S 1 Ack(R) F Initiate(I)

  19. adding self-repair and cancel Continue(I), Repair(I) S 1 Ack(R) F Initiate(I) Cancel(I) Cancel(I) D

  20. adding self-repair and cancel Continue(I), Repair(I) S 1 Ack(R) F Initiate(I) Cancel(I) Cancel(I) D

  21. Feedback and grounding in dialogue systems

  22. ICM (Allwood) • Interactive Communication Management • As opposed to Own Communication Management (OCM): self-corrections, hesitations, etc. • Feedback moves • (short) utterances which signal grounding status of previous utterance (”mm”, ”right”, ”ok”, ”pardon?”, ”huh?” etc.) • Sequencing moves • utterances which signal dialogue structure (”so”, ”now”, ”right”, ”anyway” etc.) • Turntaking moves

  23. ICM in current commercial systems • Usually, limited to ”verification” • Examples (San Segundo et. al. 2001) • I understood you want to depart from Madrid. Is that correct? [”explicit v.”] • You leave from Madrid. Where are you arriving at? [”implicit v.”] • Involves repetition or reformulation • Appears in H-H dialogue, but not very common

  24. From verification to ICM in dialogue systems • ”Verification” is just one type of ICM behaviour • Perhaps the one most cruicial in dialogue systems given poor speech recognition • Could a wider range of the ICM behaviour occurring in H-H dialogue be useful in dialogue systems? • We want a typology of ICM moves for H-H dialogue • Feedback and sequencing moves • We want to formalise it and use it in a system • Still we will implement only a subset • We want to relate it to grounding in a system

  25. Classifying feedback • Level of action • Polarity • Eliciting or non-eliciting • Form (syntactic realisation) • Content type (object- or metalevel)

  26. Feedback levels • Action levels in dialogue (Allwood, Clark, Ginzburg) • Contact: whether a channel of communication is established • Perception: whether DPs are perciveving each other’s utterances • Understanding: Whether DPs are understanding each other’s utterances • Non-contextual (”semantic”) meaning • Contextual (”pragmatic”) meaning • Acceptance: Whether DPs are accepting each other’s utterances • The function of feedback is to signal the status of utterance processing on all levels

  27. Feedback polarity • Polarity (Allwood et.al. 1992) • Positive: indicates contact, perception, understanding, acceptance • Negative: indicates lack of contact, perception, understanding, acceptance • We add a ”neutral” or ”checking” polarity – there is one or more hypotheses, but the DP lacks confidence in them • Examples • ”I don’t understand”: negative • ”Do you mean that the destination is Paris?”: checking • ”To Paris.”: positive • ”Pardon”: negative

  28. Eliciting / nonelciting feedback (Allwood et. al. 1992) • Eliciting feedback is intended to evoke a response from the user • Noneliciting feedback is not so intended • But may nevertheless recieve a response • Rough correspondence / operationalisation • Checking feedback is eliciting; explicitly raises grounding issue • Positive feedback is noneliciting; may implicitly raise grounding issue • What about negative feedback? • ”pardon?”,”huh?”: eliciting? • ”I didn’t hear you”: noneliciting?

  29. Object- or metalevel content • Utterances with metalevel content explicitly refer to contact, perception, understanding or acceptance • Object-level utterances instead refer to the task at hand • Example • S: What city are you going to? • U: Paris • S(1a): Did you say you’re going to Paris? [meta] • S(1b): Are you going to Paris? [object] • S(2a): Do you mean Paris, France or Paris, Texas? • S(2b): Do you want to go to Paris, France or Paris, Texas? • This dimension does not apply to all feedback, e.g. ”Paris.”, ”Pardon?” • (Is 2b feedback or simply an alternative question?)

  30. Realisation of feedback moves • Syntactic form: • declarative: ”I didn’t hear what you said.”; ”The destination city is Paris.” • interrogative: ”What did you say?”; ”Do you want to go to Paris?” • imperative: ”Please repeat your latest utterance!” • elliptical • interrogative: ”Paris?”, ”To Paris or from Paris?” • declarative: ”To Paris.” • In general, the exact formulation of ICM phrases may depend on various contextual factors • including activity, noise level, time constraints etc.

  31. Simplifying assumptions regarding feedback • We only represent action level and polarity • Eliciting/noneliciting dimension implicit • Negative feedback is eliciting in some sense; since something went wrong, it must be fixed • Checking feedback is also eliciting, since it poses a question that must be adressed • Positive feedback is not eliciting (we assume) • Syntactic form not included in classification; decided by generation module • Metalevel / object level perhaps not so interesting unless full compositional semantics are used • ”Do you mean that you want to Paris?” vs. ”Do you want to go to Paris?”

  32. Formalising ICM dialogue moves • Level • con: contact • per: perception • sem: semantic understanding (no context) • und: pragmatic understanding (relevance in context) • acc: acceptance • Polarity • pos: positive • neg: negative • chk: checking

  33. Feedback move notation • icm:Level*Polarity{:Args} • Examples • icm:per*pos:String – ”I heard you say ’londres’” • icm:und*neg – ”Sorry, I don’t understand” • icm:und*chk:AltQ – ”Do you mean x or y?” • icm:und*pos:P – ”To Paris.” • icm:acc*neg:Q – ”Sorry, I can’t answer Q” • icm:acc*pos – ”Okay”

  34. GoDiS: an issue-based dialogue system • Explores and implements Issue-based dialogue management (Larsson 2002) • Based on Ginzburg’s notion of a dialogue gameboard involving Questions Under Discussion (QUD) • Uses (mostly pre-scripted) dialogue plans • Extends theory to more flexible dialogue • Multiple tasks, information sharing between tasks • ICM: feedback and grounding, sequencing • Question accommodation, re-raising, clarification • Inquiry-oriented, action-oriented, negotiative dialogue

  35. System feedback for user utterances in GoDIS • contact • negative (”I didn’t hear anything from you.”, ”Hello?”) [icm:con*neg] • perception • negative: fb-phrase (”Pardon?”, ”I didn’t hear what you said”) [icm:per*neg] • positive: repetition (”I heard ’to paris’”) [icm:per*pos:String] • semantic understanding: • negative: fb-phrase (”I don’t understand”) [icm:sem*neg] • positive: reformulation (”Paris.”) [icm:sem*pos:Content]

  36. System feedback, cont’d • pragmatic understanding • negative: fb-phrase (”I don’t quite understand”) [icm:und*neg] • positive: reformulation (”To Paris.”) [icm:und*pos:Content] • checking: reformulation (”To Paris, is that correct?”, ”To Paris?”) [icm:und*chk:Content] • acceptance/integration • negative:fb-phrase with reformulation (”Sorry, I cannot answer Q”, ”Sorry, Paris is not a valid destination city.”) [icm:acc*neg:Content] • positive: fb-word (”okay.”) [icm:acc*pos]

  37. User feedback for system utterances in GoDiS • contact: - • perception • negative: fb-phrase (”Pardon?”, ”I didn’t hear what you said”) [icm:per*neg] • understanding: - • acceptance/integration • negative: fb-phrase (”I don’t know”, ”Never mind”) [icm:acc*neg] • positive: fb-word (”okay.”) [icm:acc*pos]

  38. Feedback selection • Feedback polarity selected depending on: • Contact: Whether any speech is observed • Perception: Speech recognition score > threshold • Semantics: Whether system can find a non-contextual interpretation • Pragmatic understanding: Whether system can find a relevant contextual interpretation • none: extremely high score (certain of interpretation) • Positive: high score (pretty sure of interpretation) • Checking: medium score (not so sure) • Negative: low score (very unsure) • Acceptance: Whether system can accept what has been said • General principles • Produce positive feedback only on highest possible level • When producing negative feedback on level N, produce positive feedback on level N-1

  39. Feedback on multiple levels S> Lets see. What can I do for you? U> (mumble mumble) S> Sorry, I didnt hear what you said. What can I do for you? U> siridus S> I heard you say siridus . Sorry, I dont understand. What can I do for you? U> channel one S> channel one. I dont quite understand. Do you want to add a program or change channel? Negative perception feeback Positive perception Negative understanding Positive understanding (word meaning) Negative understanding (relevance) (Task clarification)

  40. Positive understanding Rejection (negative acceptance feedback) U> turn on the t v S> turn on the TV… Sorry, I cannot control the TV set. Do you want to add a program or change channel?” U> pardon S> Sorry, I cannot control the TV set. Do you want to add a program or change channel? U> change channel S> Okay. User negative perception System repetition Positive acceptance

  41. Reactions to positive and checking feedback • After check feedback, • (e.g., ”channel one, is that correct?”) • positive response is needed, or system will assume it was wrong • After positive feedback, • (e.g., ”channel one.”) • if user gives no response or positive response, system continues to assume it was right; • If user gives negative response, system assumes it was wrong • correcting the system

  42. Correcting the system S> Lets see. What can I do for you? U> add program S> Okay. Add a program… S> Lets see. What channel do you want? U> channel six S> OK, channel five. U> no S> not channel five. So, What channel do you want? U> channel six S> Okay. channel six.” Positive feedback Negative answer to fb.

  43. Issue-based grounding • Checking feedback on und-level explicitly raises understanding-issue • icm:und*chk:Craises ?und(C) • ”Is C the meaning of the previous utterance?” • Positive response leads to adding C to shared commitments • Negative or no response leads to no action • Positive understanding feedback does not raise the understanding-issue explicitly • In fact, tentatively assumes it has been positively resolved • but makes it available for interpretation of short answers • in this case, ”yes” or ”no” • Negative reponse leads to retracting C • Positive or no response leads to no action • So far, only implemented for understanding level

  44. ISSUES, QUD and accommdation • We distinguish QUD and ISSUES: • QUD (local): Questions available for resolution of short answers • ISSUES (global): Issues/questions that have been raised but not yet resolved • QUD-to-ISSUES accommodation • If an answer is given which does not address any question on ISSUES, • But does address a question Q on QUD • Then, accommodate Q to ISSUES (this amounts to raising Q)

  45. Feedback, ISSUES and QUD • Assume previous move had content C • Checking feedback • Push ?und(C) on ISSUES and QUD • Positive feedback • Add C to shared commitments • Push ?und(C) on QUD (but not on ISSUES) • ”yes” or ”no”  do QUD-to-ISSUES accommodation • Integrating responses to understanding-issues • Done by a single rule, regardless of how the understanding-issue was raised • Given that ?und(C) is on ISSUES, • ”yes”  add C to shared commitments if not already there • ”no”  retract C from shared commitments if it’s there (actually, backtrack to saved previous shared commitments)

  46. Negative response to positive feedback S> Lets see. What channel do you want? U> channel six S> OK, channel five. channel (5) added to shared commitments; ?und(channel (5)) on QUD U> no QUD-to-ISSUES accommodation ?und(channel (5)) on ISSUES integrate ”no”  retract channel(5) S> not channel five. So, What channel do you want?

  47. Negative response to cheking feedback S> Lets see. What can I do for you? U> add program S> Okay. Add a program… S> Lets see. What channel do you want? U> channel six S> channel five? ?und(channel (5)) on ISSUES and QUD U> no integrate ”no” ( do nothing) S> So, What channel do you want? U> channel six S> Okay. channel six.”

  48. Sequencing ICM • Discourse particles • ”so” may be used to reraise a previously discussed question • ”right”, ”anyway”, ”let’s see…” • Verbose sequencing • ”Let’s talk about …”, ”Let’s return to the issue of …” • How do we classify these? • We correlate them with updates to the common ground

  49. Sequencing moves generated by GoDiS • Formal notation schema: • icm:Type{:Content} • Loading a dialogue plan • icm:loadplan – ”let’s see.” • Question accommodation • icm:accommodate – ”alright.” • Reraising an issue • icm:reraise – ”so, ” • icm:reraise:Q – ”returning to the issue of …”

  50. Sequencing ICM: reraising issue, loading a plan Signals loading a plan S> Welcome to the travel agency! U> price information S> (…) Lets see. How do you want to travel? U> by flight S> (…) What city do you want to go to? U> paris S> (…) What city do you want to go from? U> do I need a visa ? S> (…) Lets see. What country are you from? U> sweden S> Okay. Yes, you need a Visa. S> Returning to the issue of price. Lets see. What city do you want to go from? Reraising an issue explicitly

More Related