1 / 15

Regulacija sustava tri elastično spregnute mase

Regulacija sustava tri elastično spregnute mase. Opća teorija sustava. Sustav od tri elastično spregnute mase. Regulacija po stanju primjenom metode podešavanja polova. A=[0 1 0 0 0 0 -(k1+k12)/m1 0 k12/m1 0 0 0 0 0 0 1 0 0 k12/m2 0 -(k12+k23)/m2 0 k23/m2 0 0 0 0 0 0 1

kelton
Download Presentation

Regulacija sustava tri elastično spregnute mase

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Regulacija sustava tri elastično spregnute mase Opća teorija sustava

  2. Sustav od tri elastično spregnute mase

  3. Regulacija po stanju primjenom metode podešavanja polova A=[0 1 0 0 0 0 -(k1+k12)/m1 0 k12/m1 0 0 0 0 0 0 1 0 0 k12/m2 0 -(k12+k23)/m2 0 k23/m2 0 0 0 0 0 0 1 0 0 k23/m3 0 -(k2+k23)/m3 0] B=[0 0 0 0 0 1/m3] C=[1 0 0 0 0 0] p=[-1 -1.2 -1.3 -1.4 -1.5 -1.6]; % polovi regulatora K=place(A,B,p) % matrica pojacanja regulatora R = -inv(C*inv(Ar)*B)

  4. % regulacija stanja tromasenog sustava clear all clc close all T=20; k1=1; k12=1.3; k23=1.7; k2=1; % konstante opruga m1=1; m2=2; m3=3; % mase A=[0 1 0 0 0 0 -(k1+k12)/m1 0 k12/m1 0 0 0 0 0 0 1 0 0 k12/m2 0 -(k12+k23)/m2 0 k23/m2 0 0 0 0 0 0 1 0 0 k23/m3 0 -(k2+k23)/m3 0] B=[0 0 0 0 0 1/m3] C=[1 0 0 0 0 0] figure(1) subplot(231), plot(tout,Xsys(:,1),'b',tout,Yref(:,1), 'r--', 'linewidth',3), ylabel('x_1 [m]','FontSize',14), xlabel('t [s]','FontSize',14); subplot(232), plot(tout,Xsys(:,3), 'b', 'linewidth',3), ylabel('x_3 [m]','FontSize',14), xlabel('t [s]','FontSize',14); subplot(233), plot(tout,Xsys(:,5), 'b', 'linewidth',3), ylabel('x_5 [m]','FontSize',14), xlabel('t [s]','FontSize',14); subplot(234), plot(tout,Xsys(:,2), 'b', 'linewidth',3), ylabel('x_2 [m/s]','FontSize',14), xlabel('t [s]','FontSize',14); subplot(235), plot(tout,Xsys(:,4), 'b', 'linewidth',3), ylabel('x_4 [m/s]','FontSize',14), xlabel('t [s]','FontSize',14); subplot(236), plot(tout,Xsys(:,6), 'b', 'linewidth',3), ylabel('x_6 [m/s]','FontSize',14), xlabel('t [s]','FontSize',14); figure(2) subplot(221), plot(tout,U(:,1), 'linewidth',2), ylabel('u_1 [N]','FontSize',14,'FontName','Times'), xlabel('t [s]','FontSize',14); subplot(222), plot(tout,Yout(:,1), 'b', 'linewidth',3), ylabel('y [m]','FontSize',14), xlabel('t [s]','FontSize',14); % ********* x01 = 0.0; x02 = 0; x03 = 0; x04 = 0; x05 = 0; x06 = 0; X0=[x01+0.0 x02 x03 x04 x05 x06]; % pocetni uvjeti sustava %-----B: Linear Regulator ------ p=[-1 -1.2 -1.3 -1.4 -1.5 -1.6]; % polovi regulatora K=place(A,B,p) % matrica pojacanja regulatora Ar=A-B*K; R = -inv(C*inv(Ar)*B) Ystac = 1; % referentno stanje pozicije prve mase %-----E: Linear Regulator------- sim('trimassobs01') % simulink model

  5. Regulacija po izlaznoj varijabli primjenom observera stanja

  6. Dinamika sustava u prostoru stanja A=[0 1 0 0 0 0 -(k1+k12)/m1 0 k12/m1 0 0 0 0 0 0 1 0 0 k12/m2 0 -(k12+k23)/m2 0 k23/m2 0 0 0 0 0 0 1 0 0 k23/m3 0 -(k2+k23)/m3 0] B=[0 0 0 0 0 1/m3] C=[1 0 0 0 0 0]

  7. Observer stanja pobs=[-1 -2 -3 -4 -5 -6]; % polovi observera LL=place(A',C',pobs); L=LL' % matrica pojacanja observera

  8. Regulator stanja p=[-1 -1.2 -1.3 -1.4 -1.5 -1.6]; % polovi regulatora K=place(A,B,p) % matrica pojacanja regulatora R = -inv(C*inv(Ar)*B)

  9. % output regulacija primjenom observera stanja tromasenog sustava clear all clc close all T=20; k1=1; k12=1.3; k23=1.7; k2=1; % konstante opruga m1=1; m2=2; m3=3; % mase A=[0 1 0 0 0 0 -(k1+k12)/m1 0 k12/m1 0 0 0 0 0 0 1 0 0 k12/m2 0 -(k12+k23)/m2 0 k23/m2 0 0 0 0 0 0 1 0 0 k23/m3 0 -(k2+k23)/m3 0] B=[0 0 0 0 0 1/m3] C=[1 0 0 0 0 0] % ********* x01 = 0.0; x02 = 0; x03 = 0; x04 = 0; x05 = 0; x06 = 0; X0=[x01+0.0 x02 x03 x04 x05 x06]; % pocetni uvjeti sustava X0_obs=[x01 x02 x03 x04 x05 x06]; % pocetni uvjeti observera %-----B: Linear Regulator plus Observer------- p=[-1 -1.2 -1.3 -1.4 -1.5 -1.6]; % polovi regulatora pobs=[-1 -2 -3 -4 -5 -6]; % polovi observera K=place(A,B,p) % matrica pojacanja regulatora LL=place(A',C',pobs); L=LL' % matrica pojacanja observera Ar=A-B*K; R = -inv(C*inv(Ar)*B) Ystac = 1; % referentno stanje pozicije prve mase %-----E: Linear Regulator------- sim('trimassobs01') % simulink model

  10. figure(1) subplot(231), plot(tout,Xsys(:,1), 'b', tout,Xobs(:,1), 'r:', tout,Yref(:,1), 'g--', 'linewidth',3), ylabel('x_1 [m]','FontSize',14), xlabel('t [s]','FontSize',14); subplot(232), plot(tout,Xsys(:,3), 'b', tout,Xobs(:,3), 'r:', 'linewidth',3), ylabel('x_3 [m]','FontSize',14), xlabel('t [s]','FontSize',14); subplot(233), plot(tout,Xsys(:,5), 'b', tout,Xobs(:,5), 'r:', 'linewidth',3), ylabel('x_5 [m]','FontSize',14), xlabel('t [s]','FontSize',14); subplot(234), plot(tout,Xsys(:,2), 'b', tout,Xobs(:,2), 'r:', 'linewidth',3), ylabel('x_2 [m/s]','FontSize',14), xlabel('t [s]','FontSize',14); subplot(235), plot(tout,Xsys(:,4), 'b', tout,Xobs(:,4), 'r:', 'linewidth',3), ylabel('x_4 [m/s]','FontSize',14), xlabel('t [s]','FontSize',14); subplot(236), plot(tout,Xsys(:,6), 'b', tout,Xobs(:,6), 'r:', 'linewidth',3), ylabel('x_6 [m/s]','FontSize',14), xlabel('t [s]','FontSize',14); figure(2) subplot(221), plot(tout,U(:,1), 'linewidth',2), ylabel('u_1 [N]','FontSize',14,'FontName','Times'), xlabel('t [s]','FontSize',14); subplot(222), plot(tout,Yout(:,1), 'b', tout,Yobs(:,1), 'r:', 'linewidth',3), ylabel('y, y_{obs} [m]','FontSize',14), xlabel('t [s]','FontSize',14);

More Related