1 / 28

Ulysses: Cosmic rays in 4 Dimensions

Mathematisch-Naturwissenschaftliche Fakultät. Ulysses: Cosmic rays in 4 Dimensions. Bernd Heber on behalf of the KET team Rome, 12.05.2009. Mathematisch-Naturwissenschaftliche Fakultät. Outline. The Sun and the Heliosphere The Ulysses mission Energetic Particles (in the heliosphere)

Download Presentation

Ulysses: Cosmic rays in 4 Dimensions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Mathematisch-Naturwissenschaftliche Fakultät Ulysses: Cosmic rays in 4 Dimensions Bernd Heber on behalf of the KET team Rome, 12.05.2009

  2. Mathematisch-Naturwissenschaftliche Fakultät Outline • The Sun and the Heliosphere • The Ulysses mission • Energetic Particles (in the heliosphere) • Importance of the polar regions (Ulysses results) • Summary and Outlook

  3. Mathematisch-Naturwissenschaftliche Fakultät The Sun and the Heliosphere

  4. Mathematisch-Naturwissenschaftliche Fakultät • The Atmosphere of the Sun extends into interstellar space • Forming the heliosphere • Termination shock (90 AU) • Heliopause (180 AU) • Bow shock (350 AU)

  5. Mathematisch-Naturwissenschaftliche Fakultät What is Ulysses? Ulysses is ... • A collaborative project between ESA and NASA • The only space-probe in a solar-polar orbit • A mission to explore the heliosphere as an integrated system and conduct investigations of the Sun, the local interstellar medium, and the universe History ... • A mission that eventually became Ulysses was proposed as early as 1959 (2 years after Sputnik!) • The project started officially in 1977, with a launch foreseen in 1983 • After many delays, Ulysses was finally launched on 6 October 1990, from the space shuttle Discovery

  6. Mathematisch-Naturwissenschaftliche Fakultät Exploration of the polar regions by Ulysses

  7. Mathematisch-Naturwissenschaftliche Fakultät McComas et al., GRL, 2002

  8. Propagation Photons: direct connection Charged particles: Reflection in galactic magnetic fields e+e- g Modulation in the heliosphere

  9. Mathematisch-Naturwissenschaftliche Fakultät Space probes in the heliosphere • 1 AU: IMP, ACE, Sampex, SOHO, STEREO, neutron monitors, and PAMELA • Ulysses: (1.3<r< 5AU 80,2 < θ < 80,2) • Voyager 1 (r >100 AU) • Voyager 2 (r>80 AU

  10. Mathematisch-Naturwissenschaftliche Fakultät Observations of galactic cosmic rays in the heliosphere: Solar modulation at neutron monitor energies • Variations with the 11-year solar magnetic cycle • The amplitude depend on particle rigidity

  11. Mathematisch-Naturwissenschaftliche Fakultät Observations of galactic cosmic rays in the heliosphere: Charge sign dependence • Shape and amplitude depend on particle charge sign • Solar modulation cycle is the 22-year Hale cycle

  12. Mathematisch-Naturwissenschaftliche Fakultät Observations of galactic cosmic rays in the heliosphere Latitudinal Gradient Radial Gradient

  13. Mathematisch-Naturwissenschaftliche Fakultät Exploration of the polar regions by Ulysses

  14. Mathematisch-Naturwissenschaftliche Fakultät Kiel Electron Telescope on board Ulysses Relativistic Electrons: ~10 Minutes 50 MeV Protons: 30-80 Minutes

  15. Mathematisch-Naturwissenschaftliche Fakultät Kiel Electron Telescope on board Ulysses Relativistic Electrons: ~10 Minutes 50 MeV Protons: 30-80 Minutes

  16. Ulysses COSPIN/KET observations Three fast latitde scans: 1994/1995: Solar minimum; A>0-magnetic epoch 2000/2001: Solar maximum 2007/2008: : Solar minimum; A<0-magnetic epoch

  17. Mathematisch-Naturwissenschaftliche Fakultät The heliosphere and the heliospheric magnetic field • Expectation in the 1970’s for galactic cosmic ray intensities over the poles of the Sun

  18. Mathematisch-Naturwissenschaftliche Fakultät Cosmic ray distribution at solar minimum (A > 0) The LIS can not be measured over the poles of the Sun Expectation before Ulysses: Ulysses will measure the LIS over the poles of the Sun

  19. Mathematisch-Naturwissenschaftliche Fakultät Electron gradients at solar minimum (A > 0) Electrons show no latitudinal gradient

  20. Mathematisch-Naturwissenschaftliche Fakultät The heliosphere and the heliospheric magnetic field • Drift pattern in the Parker like heliospheric magnetic field

  21. Ulysses COSPIN/KET observations Three fast latitde scans: 1994/1995: Solar minimum; A>0-magnetic epoch 2000/2001: Solar maximum 2007/2008: : Solar minimum; A<0-magnetic epoch

  22. Mathematisch-Naturwissenschaftliche Fakultät Electron gradients during the A<0-magnetic epoch

  23. Mathematisch-Naturwissenschaftliche Fakultät The fourth dimension: The solar cycle

  24. Mathematisch-Naturwissenschaftliche Fakultät Variations with the 22-year solar magnetic cycle

  25. Mathematisch-Naturwissenschaftliche Fakultät Tilt [degree]

  26. Mathematisch-Naturwissenschaftliche Fakultät Consequences for the recent solar minimum The galactic cosmic ray intensity should increase by more than 20% when the tilt angle drops below 10o

  27. Mathematisch-Naturwissenschaftliche Fakultät Summary • The galactic cosmic ray intensity is altered by solar modulation • Latitudinal gradients of protons and electrons in the inner heliosphere are smaller than expected and even vanishing for the A>0-solar magnetic epoch. • The opposite is true for the A<0-solar magnetic epoch. • Current solar minimum remarkable because tilt and sunspot number out of phase • Simultaneous electron and proton measurements allow to predict the real solar minimum flux.

  28. Mathematisch-Naturwissenschaftliche Fakultät No gradient → ratio = 1 Latitudinal gradient → ratio depend on latitude (He) GCR-distribution expected to be symmetric around the heliospheric equator The galactic cosmic ray distribution shows a North-South Asymmetry

More Related