900 likes | 1.22k Views
SISTEMA DIÉDRICO. Perpendicularidad. Ejercicio Nº 117 Trazar un plano perpendicular a una recta r' - r'' y que pase por un punto dado P '- P''.
E N D
SISTEMA DIÉDRICO Perpendicularidad
Ejercicio Nº 117Trazar un plano perpendicular a una recta r'-r'' y que pase por un punto dado P'-P''.
Se puede hallar el plano de dos maneras mediante una horizontal o mediante una frontal del plano.1º Trazamos por P'-P'' una horizontal de plano h'-h'' de forma que h'' es paralela a LT y h' perpendicular a r'.
2º Hallamos la traza vertical Vh de la horizontal h'-h'' y por esta trazamos α2 perpendicular a r'', desde el puntode corte de α2 con LT trazamos α1 perpendicular a r' y tenemos el plano α1-α2 perpendicular a r'-r'' y que pasa por el punto P'-P''.
3º Trazamos por P'-P'' una frontal de plano f'-f'' de forma que f' es paralela a LT y f'' perpendicular a r''.
4º Hallamos la traza horizontal HF de la frontal f'-f'' y por esta trazamos α1 perpendiculara r', desde el puntode corte de α1 con LT trazamos α2 perpendicular a r'' y tenemos el plano α1-α2 perpendicular a r'-r'' y que pasa por el punto P'-P''.
Ejercicio Nº 118Trazar un plano que pase por un punto dado P'-P'' y sea perpendicular a un plano determinado por dos rectas, que el punto de corte con LT se encuentra fuera de los límites del dibujo.
1º Trazamos un plano auxiliar cualquiera horizontal (paralelo al PH) α2.
1º El plano α2, corta al anterior según una horizontal h'-h'', que corta a las rectas r'-r'' y s'-s'' en los puntos 1'-1'' y 2'-2''.
2º Por P' trazamos la perpendicular t' a h' que es la proyección horizontal de la recta perpendicular a α1.
3º El plano β1, corta al anterior según una frontal f'-f'', que corta a las rectas r'-r'' y s'-s'' en los puntos 3'-3'' y 4'-4''.
4º Por P'' trazamos la perpendicular t'' a h'' que es la proyección vertical de la recta perpendicular a α2.
Ejercicio Nº 119Trazar una recta perpendicular a un plano determinado por una frontal f'-f'' ysurecta de máxima pendiente r'-r'' y que pase por un punto dado P'-P''.
La recta tiene que tener sus proyecciones s' y s'' perpendiculares a las traza horizontal y perpendicular del plano respectivamente.1º Como r' es perpendicular a la traza horizontal por ser la línea de máxima pendiente l.m.p la proyección horizontal s' tiene que ser paralela a r', luego basta trazar por A' una paralela s' a r'.
2º Como f'-f'' es una frontal del plano y su proyección vertical f'' tiene que ser paralela a la traza vertical del plano, la proyección vertical s'' de la recta tiene que ser perpendicular a f'', por lo tanto por A'' trazamos una perpendicular a f''. Y tenemos las proyecciones de la recta perpendicular al plano.
Ejercicio Nº 120Trazar una recta que corte a dos rectas dadas r'-r'' y s'-s'' que sea perpendicular a segundo bisector.
1º Trazamos dos planos que pasen por las rectas dadas y sean perpendiculares al 2º bisector.2º Hallamos las trazas de la recta r'-r'' las trazas del plano tienen que pasar por Vr y Hr por estar la recta contenida en el plano α1- α2, y por el plano α perpendicular a 2º bisector las trazas tienen que estar confundidas por lo tanto no tenemos mas que unir Vr y Hr y tenemos las trazas del plano α1- α2.
3º Lo mismo ocurre con la recta s'-s'' que determina el plano β1-β2 perpendicular también al 2º bisector y que pasa por la recta s'-s''.
4º La intersección de ambos planos punto Hi-Vi es un punto del 2º bisector y el punto de corte de los planos y las rectas.
5º La recta solución es la recta i'-i'' que es perpendicular al 2º bisector y corta a las dadas.
Ejercicio Nº 121Por un punto dado P'-P'' trazar un plano perpendicular a otro dado.
El plano tiene infinitos planos que pasen por el punto P'-P'' y son perpendiculares al plano dado.1º Trazamos por el punto P'-P'' una recta r'-r'' perpendicular al plano dado, r' perpendicular a α1 y r'' perpendicular a α2.
3º Trazamos la traza β2, traza vertical del plano pedido y donde esta traza corte a LT trazamos la otra traza horizontal β1, que tiene que pasar por Hr.Según que traza tracemos primero nos sale un plano u otro, por eso tiene infinitas soluciones.
Nº 122Trazar un plano perpendicular a otros dos planos dados α y β y que pase por un punto dado A'-A'' .
1º Trazamos por el punto A'-A'' dos rectas r'-r'' y s'-s'' perpendiculares a los planos α y β, por A'' trazamos, r''y s'' perpendiculares a α2 y β2 respectivamente y por A' trazamos, r' y s' perpendiculares a α1 y β1 respectivamente.
2º Hallamos las trazas de las rectas r'-r'' y s'-s''Vr-Hr y Vs-Hs.
3º Unimos las trazas verticales Vr con Vs que nos determina la traza vertical β2 del plano buscado, unimos a continuación las trazas horizontales Hr con Hs y tenemos la traza horizontal β1 del plano buscado, las trazas tienen que cortarse en LT.
Ejercicio Nº 123Por una recta dada r'-r'' trazar un plano perpendicular a otro plano dado α.
El plano tiene que pasar por las trazas de la recta r'-r''.1º Hallamos las trazas de la recta r'-r'' que son Vr-Hr por las que tienen que pasar β1 y β2.
2º Tomamos un punto P'-P'' de la recta r'-r'' y trazamos la recta s'-s'' perpendicular al plano α dado, s' perpendicular a α1 y s'' perpendicular a α2.
4º Unimos las trazas verticales Vr con Vs y obtenemos la traza vertical β2 del plano buscado, unimos ahora Hr con Hs y obtenemos la traza horizontal β1 del plano perpendicular al plano α y que pasa por la recta r'-r''.
Ejercicio Nº 124Trazar dos planos α y β cuya intersección sea perpendicular a un plano φ dado y que pasen por dos rectas r'-r'' y s'-s''.
Si la intersección de los dos planos pedidos ha de ser perpendicular a φ también lo será a cada uno de ellos. Por lo que se soluciona el problema trazando palos perpendiculares al dado que pasen los las rectas dadas.1º Hallamos las trazas de r'-r'', Vr-Hr.
2º Tomamos un punto A'-A'' de r'-r'' y trazamos la recta m'-m'' perpendicular a el plano φ por A'' trazamos, m'' perpendicular φ2 y por A' trazamos, m' perpendicular a φ1.
4º Unimos Vr con Vm ytenemos la traza β2, unimos Hm con Hr y tenemos la traza β1.
5º Repetimos el mismo procedimiento con la recta s'-s'' y hallamos sus trazas Vs y Hs.
6º Tomamos un punto B'-B'' de s'-s'' y trazamos la recta n'-n'' perpendicular a el plano φ por B'' trazamos, n'' perpendicular φ2 y por B' trazamos, n' perpendicular a φ1.
8º Unimos Vs con Vn ytenemos la traza α2, unimos Hn con Hs y tenemos la traza α1
9º La intersección de los planos α1-α2 y β1-β2 es la recta i'-i'' que vemos que es perpendicular al plano φ.
Ejercicio Nº 125Dadas dos rectas r'-r'' y s'-s'' determinar el plano α que determinan ambas rectas y hallar la intersección con un plano perpendicular a α y que pase por el punto dado A'-A''.
1º Hallamos el plano que determinan las rectas r'-r'' y s'-s'', para lo que hallamos las trazas de ambas rectas Vr-Hr y Vs.
2º Unimos Vr con Vs y obtenemos α2 después por Hr trazamos α1 paralela s' y tenemos el plano buscado.
3º Para trazar un plano perpendicular que pase por A'-A'' basta trazar la horizontal de plano t'-t'' en la que t' sea perpendicular a s' proyección horizontal de la horizontal s'-s'' plano α cualquier plano que pase por Vt es perpendicular al α.
4º Trazamos el plano β1-β2 en que la traza vertical β2 pasa por Vt y la traza horizontal β1 es paralela a t'.
5º Hallamos la intersección de los planos α y β, en este caso las trazas horizontales no se corta en el dibujo, por el punto de corte de α2 y β2 trazamos la perpendicular a LT.