200 likes | 319 Views
Humboldt-Universität zu Berlin Institut für Informatik Didaktik der Informatik / Informatik und Gesellschaft Seminar „Educational Data Mining“. Organisatorisches. Ort: RUD25, R. 3.113 Zeit: Dienstags, 9:15 – 10:45 Uhr Bedingungen für Leistungsnachweis: 30min. Vortrag + 15min. Diskussion
E N D
Humboldt-Universität zu BerlinInstitut für InformatikDidaktik der Informatik / Informatik und GesellschaftSeminar „Educational Data Mining“
Organisatorisches • Ort: RUD25, R. 3.113 • Zeit: Dienstags, 9:15 – 10:45 Uhr • Bedingungen für Leistungsnachweis: • 30min. Vortrag + 15min. Diskussion • Teilnahme an den Vorträgen ihrer Kommilitonen • aktive Teilnahme an den Diskussionen • schriftliche Ausarbeitung(ca. 10 Seiten mit Literaturverzeichnis) • Webseite/weitere Informationen: • http://cses.informatik.hu-berlin.de/ • For Students -> Teaching -> SS2014 -> Educational Data Mining • Abschlussarbeiten im Bereich intelligente Lernsysteme
Seminartermine – Ablauf (1) KW16 (15.04.): Einführung, Themenvorstellung KW17 (22.04.): frei (finale Themenvergabe) KW18 (29.04.): frei KW19 (06.05.): Vorträge 1 und 2 KW20 (13.05.): Vorträge 3 und 4 KW21 (20.05.): Vorträge 5 und 6 KW22 (27.05.): Vorträge 7 und 8
Seminartermine – Ablauf (2) KW23 (03.06.): Vorträge 9 und 10 KW24 (10.06.): Vorträge 11 und 12 KW25 (17.06.): Vorträge 13 und 14 KW26 (24.06.): Vorträge 15 und 16 KW27 (01.07.): Vorträge 17 und 18 KW28 (08.07.): Vorträge 19 und 20 KW29 (15.07.): Puffer … KW40 (30.09.): Abgabe schriftliche Ausarbeitung
Introduction to EDM • What is Educational Data Mining (EDM)? • Educational Data Mining is an emerging discipline, concerned with developing methods for exploring the unique types of data that come from educational settings, and using those methods to better understand students, and the settings which they learn in. • >>>http://www.educationaldatamining.org/
Methods in EDM • Prediction • Clustering • Relationship mining • Discovery with models • Distillation of data for human judgment Ryan Baker
Who covered in EDM • Students/learners • Teachers/instructors • Administrators/policy makers
What can EDM help them? • Students/learners • Hint generation (Barnes, T. et.al 2008) • Personalized courseware recommendation (Chen, C. et al. 2004) • Recommend learning partners (Huang, Jeff JS et al. 2010) • …
What can EDM help them? • Teachers/instructors • Detect gaming system (Ryan Baker) • Predict motivation level (Mihaela Cocea et al. 2006) • Assess learners’ performance (Chih-Ming Chen et al. 2009) • …
What can EDM help them? • Administrators/policy makers • The impact of curriculum revisions (Becker, K. et al. 2000) • Course Planning of extension education (Hsia, T. et al. 2008) • Select students for remedial classes (Ma, Y. et al. 2000) • …
Themenbereiche Theoretische Grundlagen • Mathematische Modelleund Ansätze • Data Mining Techniken • Künstliche Intelligenz Educational Data Mining in Intelligent Tutoring Systems • Übersicht über intelligente/adaptive Lernsysteme • Psychologische, lerntheoretische und didaktische Grundlagen • Zusammenhänge zwischen EDM und ITS Learning Analytics imE-Learning • Methoden und Ansätze • Technologien und Anwendungen • Zukünftige Entwicklungen
Themen „Theoretische Grundlagen“ (1) • Einführung in Educational Data Mining und Learning Analytics(Thema für 2 Studenten) • Was ist Educational Data Mining? • Was ist Learning Analytics? • Worin unterscheiden sie sich und wo liegen Gemeinsamkeiten? • Was sind typische Data Mining Techniken und was sind ihre Hauptziele? • Wo und wie lassen sich diese Techniken lernförderlich einsetzen? • Prediction • Was bedeutet Prediction im Educational Data Mining und wie funktioniert es? • Was sind die gebräuchlichsten Modelle, um Vorhersagen zu machen? • Wie und wo werden diese Modelle im Educational Data Mining eingesetzt? • Wo liegen deren Grenzen?
Themen „Theoretische Grundlagen“ (2) • Clustering • Was ist Clustering und wie funktioniert es? • Warum clustert man Daten im Educational Data Mining? • Was ist Spectral Clustering und wofür wird es benötigt? • Was ist Model-based Clustering? • Was sind Nachteile des K-Means Clusterings? • Gibt es noch weitere Clusteringverfahren und wofür können sie im Educational Data Mining eingesetzt werden? • Relationship Mining • Was ist Relationship Mining und was sind die gebräuchslichsten Methoden? • Was ist Sequential Pattern Mining, wie funktioniert es und wo wird es eingesetzt? • Was sind Unterschiede zwischen Causal Data Mining und Association Rule Mining?
Themen „Theoretische Grundlagen“ (3) • Social Network Analysis • Was sind Herausforderungen von Social Network Analysis Methoden im Educational Data Mining? • Was sind Ziele der Social Network Analysis und wie werden diese erreicht? • Swarm Intelligence • Was versteht man unter Swarm Intelligence? • Was sind typische Algorithmen und Anwendungen im Zusammenhang mit menschlichem Lernen? • Was sind Vor- und Nachteile von Swarm Intelligence? • Analyse von Student/Student- bzw. Student/Tutor-Interaktionen • Wie können (computergestützte) Interaktionen zwischen Lernern/Lehrenden identifiziert werden? • Wie können solche Analysen zu besserem Verständnis und zu Verbesserungen im Lernen führen?
Themen „Educational Data Mining in Intelligent Tutoring Systems“ (1) • Einführung in Intelligent Tutoring Systems und Student Modeling (Thema für 3 Studenten) • Was sind Intelligent Tutoring Systems und zu welchem Zweck wurden und werden sie entwickelt? • Was sind Ziele und Herausforderungen in ITSs? • Was sind typische Komponenten solcher Systeme? • Was bedeutet Student Modeling und wofür ist es wichtig? • Auf welchen Theorien bauen ITSs auf? • Was sind Authoring Tools für ITSs, wie funktionieren sie und welche gibt es? • Cognitive Tutors • Was sind Cognitive Tutors und wie funktionieren sie? • Auf welcher Lerntheorie basieren diese Tutoren welchen Ansatz verfolgen sie? • Wie bzw. wo kann Educational Data Mining in Cognitive Tutors eingesetzt werden?
Themen „Educational Data Mining in Intelligent Tutoring Systems“ (2) • Constraint-based Tutors • Was sind Herausforderungen von Social Network Analysis Methoden im Educational Data Mining? • Was sind Ziele der Social Network Analysis und wie werden diese erreicht? • Dialogue-based Tutors • Was sind Dialogue-based Tutors und wie funktionieren sie? • Was sind die grundlegendenden Prinzipien des Natural Language Processing? • Wie kann Educational Data Mining helfen, solche Systeme zu verbessern?
Themen „Educational Data Mining in Intelligent Tutoring Systems“ (3) • Affective Intelligent Tutoring System • Was sind Affective ITS? • Welche Affective States exisitieren und wie können sie das Lernen beeinflussen? • Wie können Affective States erkannt und im Lernen berücksichtigt werden? • Misuse of Intelligent Tutoring Systems • Was bedeutet unsachgemäßer Gebrauch von Lernsystemen? • Welche Auswirkungen hat dieser aufs Lernen? • Wie kann dieser erkannt werden? • Wie kann Missbrauch vermieden bzw. unterbunden werden?
Themen „Learning Analytics im E-Learning“ (1) • Visualization • Wie können Lernerdaten mithilfe von Learning Analytics aufbereitet und visualisiert werden? • Welchen Nutzen haben solche Visualisierungen? • Wo finden sie Anwendung? • Recommendation • Wie können Empfehlungen beim Lernen helfen? • Wie kann Learning Analytics dazu beitragen, Empfehlungen für Lehrer bzw. Lernende generieren? • Wo werden solche Empfehlungen zur Unterstützung von Lernprozessen eingesetzt? • Assessment • Wie können technische Systeme eingesetzt werden, um die Beurteilung von Lernenden bzw. ihrer Aktivitäten zu unterstützen? • Welche Rolle spielt Learning Analytics in diesem Zusammenhang? • Wo werden solche Systeme eingesetzt?
Themen „Learning Analytics im E-Learning“ (2) • Big Data • Was versteht man unter Big Data im Zusammenhang mit Lernen? • Woher kommen große Datenansammlungen? • Wie verändern große Datenmengen den Einsatz von Learning Analytics im E-Learning? • Social Learning Analytics • Was ist Social Learning Analytics? • Wo kann es eingesetzt werden? • Wie kann es Lernen in sozialen Netzwerken ermöglichen bzw. unterstützen? • Massive Open Online Courses (MOOCs) • Was sind MOOCs und wie funktionieren sie? • Wo gibt es Ansatzpunkte für Learning Analytics in MOOCs? • Wie kann Learning Analytics die Durchführung von MOOCs unterstützen?