620 likes | 756 Views
Comprehensive Exam Mainul Islam Department of Computer Science & Engineering University of Texas at Arlington April 20 th , 2012. Supervisor: Dr. Christoph Csallner Committee members: Dr. David Kung Dr. Donggang Liu Dr. Jeff Lei. Genetic Algorithms for Randomized Unit Testing.
E N D
Comprehensive ExamMainul IslamDepartment of Computer Science & EngineeringUniversity of Texas at ArlingtonApril 20th, 2012 Supervisor: Dr. Christoph Csallner Committee members: Dr. David Kung Dr. Donggang Liu Dr. Jeff Lei
Genetic Algorithms forRandomized Unit Testing James H. Andrews Tim Menzies Felix C.H. Li IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 1, JANUARY/FEBRUARY 2011
Contribution • Nighthawk, a novel two-level genetic random testing system that encodes a value reuse policy. • Optimizing the Genetic Algorithm using a “Feature Subset Selection” tool to achieve nearly the same (90%) coverage 10 times faster. • The optimization learned from one set of classes (Java utils) is successfully applied to another set of classes (Apache system).
Genetic Algorithm (GA) • Chromosomes <set of parameters/gene-type> • Population <set of chromosomes> • Candidate Solutions <set of possible solutions> • Fitness Function • Genetic operator • Mutation • Crossover
GA Gene-types: In this research • Number of Method Calls, n • Lower bound, l • Upper bound, u • … • Chromosome <n, l, u, …>
NightHawk • Lower level • Randomized Unit-testing Engine • Constructs and Run a test case • Upper level • Genetic Algorithm • Performs usual chromosome evaluation step (fitness evaluation, mutation, crossover)
Randomized Unit-Testing (RU) • Input: Chromosome • M – set of Target Methods • IM – set of all types in M (including primitive types) • CM – set of all callable methods in M Each type tεIMhas an array of “value-pools”
RU: Example • Class T { • public c() { … } • public c(int x) { … } • public int put(int x, int y) {…} • // … • } • IM = {int, T} • Chromosome: <n, np, nv> • Input: c1 <3, <2, 1>, <5, 3, 4>> • n =numberOfCalls • np = numberOfPools • Nv = numberOfValues int T vp1 vp2 vp1
RU: Example • IM = {int, T} • Chromosome: <n, np, nv> • Input: c1 <3, <2, 1>, <5, 3, 4>> int T • Class T { • public c() { … } • public c(int x) { … } • public int • put(int x, int y) {…} • // … • } v1 v2 v1 … new T().put( 1, 5 ) new T(5).put( 1, 2 ) new T().put( 5, 5 ) …
Example: Triangle Unit Form triangleCheck (int x, int y, int z) { //… if(x == y || y == z || z == x) { if (x == y && y == z) print “equilateral” else print “isoscales” } //… }
Genetic Algorithm (GA) • Performs usual chromosome evaluation step (fitness selection, mutation, crossover) • Input: set M of target methods - Constructs an initial population of size, p - Loops for desired number of generations, g - Clone the fittest chromosome, mutating the genes using point mutation, m
GA (continued…) • Default Settings: p = 20 g = 50 m = 20 • Fitness Function: (number of coverage points covered) * (coverage factor) - (number of method calls performed overall)
Optimization of GA (OGA) • Feature Subset Selection (FSS) • RELIEF – FSS tool • Assumes that the data are divided into groups and tries to find the features that serve to distinguish instances in one group from instances in other groups. • Calculate the merit of a feature • Core intuition: Features that change value between groups are more meritorious than features that change value within the same group.
OGA: Analysis Activities • Merit Analysis • Gene-Type Ranking • Progressive Gene-Type Knockout
OGA: Merit Analysis • Finds a “merit” score between for each of the genes corresponding to the subject unit. • The input to the merit analysis, for a set of subject classes, is the output of one run of Nighthawk for 40 generations on each of the subject classes • Each run yields a ranked list R of all genes • merit (g, u) is the RELIEF merit score of gene g derived from unit u • rank (g, u) is the rank in R of gene g derived from unit u
OGA: Gene-Type Ranking • bestMerit(t) - is the maximum, over all genes g of type tand all subject units u, of merit (g, u) • bestRank(t) - is the minimum, over all genes g of type tand all subject units u, of rank (g, u) • avgMerit(t) - is the average, over all genes g of type tand all subject units u, of merit (g, u) • avgRank(t) - is the average, over all genes g of type tand all subject units u, of rank (g, u)
OGA: Progressive Gene-Type Knockout • Assume a constant value for each gene of that type • Run NightHawk on subject unit with all 10 gene types • Then with the lowest (least useful) gene type knocked out • Then the lowest two gene types knocked out • So on… • Compare the results
Case Study: Initial • 16 classes from “Collection” and “Map” (of Java 1.5.0) – 12,137 LOC • Perform merit analysis, gene-type ranking and progressive gene-type knockout based on bestMeritandbestRank • Only best four gene types according to the bestMeritand best seven gene types according to the bestRankrankingcan achieve 90 percent of coverage within 10 percent of time
CUTE: A Concolic Unit Testing Engine for C KoushikSen DarkoMarinov GulAgha FSE’ 05, September 5–9, 2005, Lisbon, Portugal.
DART Solve: 2 *Yo = Xo Solution: x = 2, y = 1 Solve: 2*Yo=Xo ^Xo>=Yo+ 10 Solution: x = 30, y = 15 Concrete Execution Symbolic Execution intfoo(int y) { return (2*y); } void testMe(int x, int y) { int z = foo(y); if(z == x) { if(x >= y+10) { // ERROR; } } } Concrete State Symbolic State Path Condition x = 4, y = 5 x = Xo, y = Yo z = 2 * Yo z = 10 x = 2, y = 1 x = Xo, y = Yo 2 *Yo = Xo z = 2 * Yo z = 2 x = 30, y = 15 z = 30 Xo <Yo + 10 x = 4, y = 5 x = Xo, y = Yo 2 *Yo != Xo z = 2 * Yo z = 10
DART Solve: (2*Yo)%50= Xo Stuck? Solve: 10= Xo Solution: x = 10, y = 5 Solve: (2*Yo)%50= Xo Replace Yowith 5 Concrete Execution Symbolic Execution intfoo(int y) { return (2*y)%50; } void testMe(int x, int y) { int z = foo(y); if(z == x) { if(x >= y+10) { // ERROR; } } } Concrete State Symbolic State Path Condition x = 4, y = 5 x = Xo, y = Yo z= (2*Yo)%50 z = 10 x = 4, y = 5 x = Xo, y = Yo (2*Yo )%50!=Xo z=(2*Yo)%50 z = 10
CUTE • Deals with Pointer • Represents inputs using a logical input map • It is sufficient to know how the memory cells are connected
CUTE: WorkFlow • Uses the logical input map to generate a concrete input memory graph for the program and two symbolic states, • One for pointer values • One for primitive values • Runs the code on the concrete input graph, collects constraints that characterize the set of inputs that would take the same execution path as the current execution path. • It negates one of the collected constraints and solves the resulting constraint system to obtain a new logical input map.
CUTE: Example XO > 0 PO != NULL 2 * XO +1 == VO PO == NO
Optimizing Constraint Solving • Fast Unsatisfiability Check • Common Sub-constraints Elimination • Incremental Solving
Data Structure Testing • Generating Inputs with Call Sequences • Solving Data Structure Invariants
Differential Symbolic Execution Suzette Person Matthew B. Dwyer Sebastian Elbaum Corina S. Pasareanu FSE-16, November 9–15, Atlanta, Georgia, USA.
Introduction • Existing techniques for characterizing code changes are imprecise leading to unnecessary maintenance efforts. • Differential symbolic execution (DSE), exploits the fact that program versions are largely similar to reduce cost and improve the quality of analysis results. • For example, during regression testing, differences can be used to focus re-testing efforts by selecting only test cases that exercise the modified code.
Contribution • Precisely characterizing behavioral program differences. • Compute over-approximating symbolic method summaries by identifying and automatically summarizing the behavior of common program fragments. • Defines two behavioral equivalences between program versions.
Contribution (continued…) • Techniques for post-processing symbolic execution results to compute behavioral differences. • Defines the conditions under which DSE analysis results completely account for program behavior and, importantly when they do not. • Describes three applications of DSE results to support the automation of program evolution tasks.
Summarizing Program Behavior • Symbolic summary y = x ; If( y > 0 ) then y++; return y; • Symbolic Execution calculate two behaviors: ( X > 0 , y=x ^ RETURN == X+1 ) Symbolic ( !(X > 0) , y=x ^ RETURN == X ) summary
Example: Refactoring finalint THRESHOLD = 100; public intlogicValue(int t) { • int elapsed = currentTime – t; • intval = 0; • if(elapsed < THRESHOLD) { val = old; } else { for (inti=0; i<data.length; i++) { val = val + data[i]; } old = val; return val; } } Version 2 public intlogicValue(int t) { if(!(currentTime – t >= 100)) { return old; } else { intval = 0; for (inti=0; i<data.length; i++) { val = val + data[i]; } old = val; return val; } } Version 1 C
Example: Behavioral Change finalint THRESHOLD = 100; public intlogicValue(int t) { • int elapsed = currentTime – t; • intval = 0; • if(elapsed < THRESHOLD) { val = old; } else { for (inti=0; i<data.length; i++) { val = val + data[i]; } old = val; return val; } } Version 2 finalint THRESHOLD = 100; public intlogicValue(int t) { • int elapsed = currentTime – t; • intval = 0; • if(elapsed < THRESHOLD) { val = 1; } else { for (inti=0; i<data.length; i++) { val = val + data[i]; } old = val; return val; } } Version 3 C
Example: Symbolic Summary for V1 public intlogicValue(int t) { if(!(currentTime – t >= 100)) { return old; } else { intval = 0; for (inti=0; i<data.length; i++) { val = val + data[i]; } old = val; return val; } } Version 1 - ( !(CT − T >= 100), RETURN == O ) - ((CT − T >= 100) ^ (D == null), RETURN == NRE ) - ((CT − T >= 100)^(!D== null)^!(0 < D.L), old == 0 ^ RETURN == 0 ) - ((CT − T >= 100)^!(D== null) ^ 0 < D.L^!(1 < D.L), old == D[0] ^ RETURN == D[0] ) - ((CT − T >= 100)^!(D== null) ^ 0 < D.L^ 1 < D.L ^ !(2 < D.L), old == D[0] + D[1] ^ RETURN == D[0] + D[1])
Ex: Abstract Summary for C C • for (inti=0; i<data.length; i++) { • val = val + data[i]; • } • old = val; • for (inti=0; i<data.length; i++) { • val = val + data[i]; • } • old = val; • ( IPC(D, V), old = oldC(D, V) ^ val = valC(D, V) ) D, V = Symbolic Variables for data and val IPC = Path conditions inside block C xC(D, V) = resultant values for variable x inside block C
Example: Method Summary for v1, v2, v3 • For Version 1: • ( !(CT − T >= 100), RETURN = O ) • ( (CT − T >= 100) ^ IPC(D, V), old = oldC(D, V ) ^ RETURN = valC(D, V) ) • For Version 2: • ( CT − T < 100), RETURN = O ) • ( !(CT − T < 100) ^ IPC(D, V ), old = oldC(D, V ) ^ RETURN = valC(D, V) ) • For Version 3: • ( CT − T < 100), RETURN = 1 ) • ( !(CT − T < 100) ^ IPC(D, V), old = oldC(D, V ) ^ RETURN = valC(D, V) )
Example: Delta, Δ • V1 and v2 are equivalent • Δv3, v2 = { (CT − T < 100), RETURN = 1) } • Δv2, v3 = { (CT − T < 100), RETURN = O) }
Equivalence • Functional Equivalence • Ignore internal details of a method • “what” effects it computes for a given input • Partition-effects Equivalence • Considers both: “what” a method does and • “how” it partitions the input space
Equivalence and Delta • Functional Equivalence and Delta • Ignore internal details of a method • “what” effects it computes for a given input • Partition-effects Equivalence and Delta • Considers both: “what” a method does and “how” it partitions the input space