1 / 38

BAB 2

BAB 2. DEFINISI & KONSEP DASAR. SEJARAH. TERMODINAMIKA adalah satu sains yang mempelajari tentang penyimpanan ( storage ), pengubahan ( transformation ), dan pemindahan ( transfer ) energi. FORMS OF ENERGY.

lacy
Download Presentation

BAB 2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. BAB 2 DEFINISI & KONSEP DASAR

  2. SEJARAH

  3. TERMODINAMIKA adalahsatusains yang mempelajaritentangpenyimpanan (storage), pengubahan (transformation), danpemindahan (transfer) energi

  4. FORMS OF ENERGY

  5. Dalamtermodinamika, kitaakanmenyusunpersamaanmatematis yang menghubungkantransformasidan transfer energidengansifat-sifatbahan, sepertitemperatur, tekanan, atau enthalpy. Kebanyakanberdasarkanpengamataneksperimental yang telahdisusunmenjadipernyataanmatematis, atauhukum: Hukum Pertama Termodinamika Hukum Kedua Termodinamika

  6. SEKELILING SISTEM BOUNDARY SISTEM TERMODINAMIS Sistemtermodinamisadalahbagiandarisemesta yang menjadiperhatian/ sekumpulan senyawa yang terdiri dari partikel-partikel atom dan molekul

  7. SISTEM TERISOLASI TERTUTUP TERBUKA

  8. Termos air sebagaisalahsatucontohsistem yang mendekatisistemterisolasi

  9. SATUAN

  10. JUMLAH/UKURAN Massa (m) Jumlah mol (n) Volume total (Vt)

  11. BESARAN BESARAN EKSTENSIF BESARAN INTENSIF (vol. spesifik) (vol. molar) 13 13 13

  12. GAYA F = m a

  13. SISTEM SATUAN

  14. TEKANAN F = W = mg F = W = mg d D P1 < P2 P2 P1 16

  15. TEKANAN GAS DALAM SILINDER

  16. TEKANAN STATIS DALAM FLUIDA Dasar sebuah kolom mengalami tekanan: Volume fluida = V = Ah Beratfluida = gV = gAh Tekanan = P adalah tekanan yang disebabkan oleh berat fluida

  17. Jikadiataspermukaanfluidaadatekanan yang bekerja, yaitutekananudara (Pudara), makatekanan total didasarkolom yang disebutjugatekananstatisfluidaadalah: P = gh + Pudara Pudara udara h P = gh + Pudara

  18. TEMPERATUR

  19. Skalatemperaturrelatif CELCIUS FAHRENHEIT Titikbeku air = 0C Titikdidih air = 100C Titikbeku air = 32F Titikdidih air = 212F

  20. SkalatemperaturABSOLUT KELVIN RANKINE

  21. TEMPERATUR TERMODINAMIS DARI BEBERAPA TITIK PENTING

  22. Temperaturdangerakanmolekul Untukmemahamikonseppanas (heat) dantemperatur, kitaperlumengingatbahwabendaterdiridaripartikel (atom ataumolekul) yang selalubergerakdansalingberinteraksi

  23. In a gas, the atoms or molecules are further apart and have little interaction with one another. The motion of these particles is confined by the walls of the containing vessels. 26

  24. In a liquid, the atoms or molecules, are further apart than in a solid, and are not arranged in any special order. There is less interaction between the molecules, and they are free to move in any direction, but as interactions between the molecules are still present, most molecules are confined to the volume occupied by the liquid sample 27

  25. In a solid, a metal for example, the particles are atoms, arranged in an orderly array. The atoms are relatively close to one another, and the motion of each atom is restricted by its interaction with other atoms.

  26. dl KERJA/WORK (W) (1) F Gaya yang dikenakanoleh piston terhadapfluidadalamsilinder: F = P A Pergeseran piston: (1.a)

  27. F dl F searahdenganpergeseranpiston (dl)  menurutpers. (1) Wpositif. Volume gas dalamsilindermengecildVtnegatif. penggabunganpers. (1) dan (1.a) menghasilkan:

  28. Karena A konstan maka: (2) (3)

  29. ENERGI KINETIK (EK) dl start finish W = F dl = m a dl

  30. Integrasi:

  31. ENERGI POTENSIAL (EP) m z2 Kerja minimum yang diperlukan : W = F (z2 z1) = mg (z2 z1) z W = mgz2 mgz1 = (mgz) m z1 W = EP F = mg

  32. KEKEKALAN ENERGI EK+EP=0

  33. PANAS (HEAT)

  34. Transfer energi

  35. Energi ditransfer dalam bentuk kerja: tumbukan antar partikel Secara makroskopis tak teramati Harus ada satu besaran makroskopis yang mewakili transfer energi dalam skala mikroskopis TEMPERATUR

More Related