430 likes | 829 Views
ELEMENTOS DE ESTADÍSTICA BIVARIANTE. Dpto. de Cs. Matemáticas y Física Área Estadística. Prof. Juan Moncada Herrera. Estadística Bivariante. Objetivos. Estudiar, explorar y/o valorar la relación o asociación existente entre DOS variables. Estadística Bivariante. Escenarios posibles.
E N D
ELEMENTOS DEESTADÍSTICA BIVARIANTE Dpto. de Cs. Matemáticas y Física Área Estadística Prof. Juan Moncada Herrera
Estadística Bivariante Objetivos Estudiar, explorar y/o valorar la relación o asociación existente entre DOS variables
Estadística Bivariante Escenarios posibles
Estadística Bivariante Esquema de análisis
Estadística Bivariante AMBAS VARIABLES CUANTITATIVAS
Estadística Bivariante Cuantitativa Descriptiva > Gráfica Diagrama de Dispersión
Estadística Bivariante Cuantitativa Descriptiva > Gráfica Diagrama de Dispersión
Estadística Bivariante Cuantitativa Descriptiva > Gráfica Diagrama de Dispersión
Estadística Bivariante Cuantitativa Descriptiva > Numérica Coeficiente de correlación lineal de Pearson
Estadística Bivariante Cuantitativa Descriptiva > Numérica El porcentaje de variabilidad de Y explicado por la variabilidad en X lo mide el coeficiente de determinación, que corresponde a r2.
Estadística Bivariante Cuantitativa Descriptiva > Numérica X: Puntaje en un sistema de aprendizaje Y: Costo asociado al logro del puntaje
Estadística Bivariante Cuantitativa Inferencial H0: Las variables son independientes (Variables no relacionadas) Ha: Las variables No son independientes (Variables relacionadas)
Estadística Bivariante Cuantitativa Inferencial Estadístico de Prueba:
Estadística Bivariante AMBAS VARIABLES CUALITATIVAS
Estadística Bivariante Cualitativa Los Objetivos DADAS DOS CARACTERÍSTICAS DE LA POBLACIÓN, Y EN BASE A LAS FRECUENCIAS U OBSERVACIONES CORRESPONDIENTES: ¿EXISTE ALGUNA RELACIÓN ENTRE TALES CARACTERÍSTICAS, O MÁS BIEN SON ELLAS INDEPENDIENTES?
Estadística Bivariante Cualitativa Preliminares Punto de partida:El cuestionario
Estadística Bivariante Cualitativa Preliminares La Tabla de Datos
Estadística Bivariante Cualitativa Preliminares Tabla de códigos condensados
Estadística Bivariante Cualitativa Resumen-Descripción La Tabla de Frecuencias o Tabla de Contingencia: Un Primer Resumen
Estadística Bivariante Cualitativa Resumen-Descripción La Tabla de Frecuencias o Tabla de Contingencia: Un Primer Resumen: Construcción
Estadística Bivariante Cualitativa Resumen-Descripción La Tabla de Frecuencias o Tabla de Contingencia: Un Primer Resumen: Representación gráfica
Estadística Bivariante Cualitativa Resumen-Descripción La Tabla de Frecuencias o Tabla de Contingencia: Un Primer Resumen: Representación gráfica
Estadística Bivariante Cualitativa Resumen-Descripción La Tabla de Frecuencias o Tabla de Contingencia: Un Primer Resumen: Representación gráfica
Estadística Bivariante Cualitativa Resumen-Descripción La Tabla de Frecuencias o Tabla de Contingencia: Un Primer Resumen: Representación gráfica
Estadística Bivariante Cualitativa Resumen-Descripción La Tabla de Frecuencias Relativas:Haciendo “comparables” dos tablas Frecuencias Absolutas Frecuencias Relativas
Estadística Bivariante Cualitativa Resumen-Descripción La Tabla de Frecuencias Relativas:Haciendo “comparables” dos tablas Frecuencias Absolutas Frecuencias Relativas
Estadística Bivariante Cualitativa Resumen-Descripción La Tabla de Frecuencias Relativas:Haciendo “comparables” dos tablas Frecuencias Absolutas Frecuencias Relativas
Estadística Bivariante Cualitativa Resumen-Descripción Comparaciones pertinentes: Las Tablas de Perfiles Frecuencias absolutas Perfiles Fila (o Linea)
Estadística Bivariante Cualitativa Resumen-Descripción Comparaciones pertinentes: Las Tablas de Perfiles Frecuencias absolutas Perfiles columna
Estadística Bivariante Cualitativa Inferencia Las Hipótesis H0: Las variables son independientes (Variables no relacionadas) Ha: Las variables No son independientes (Variables relacionadas)
Estadística Bivariante Cualitativa Inferencia Midiendo la relación entre las variables:La tabla de Valores Esperados Valores Observados Valores Esperados
Estadística Bivariante Cualitativa Inferencia Midiendo la relación entre las variables:El estadístico Chi-cuadrado fobs: Frecuencia absoluta observada fESP: Frecuencia esperada 2: Distribución Chi-cuadrado con grados de libertad, =(No filas - 1)(No columnas – 1)
Análisis Factorial de Correspondencias
Jean Paul Benzecri (1932 - ) Análisis Factorial de Correspondencias OBJETIVO: Gráficamente: Visualizar, mediante proyecciones sobre planos, las proximidades entre perfiles línea, entre perfiles columna y entre perfiles línea y perfiles columna de una tabla de contingencia.
Análisis Factorial de Correspondencias LA TABLA DE DATOS:
Análisis Factorial de Correspondencias TRANSFORMACIONES INICIALES:
Análisis Factorial de Correspondencias TRANSFORMACIONES INICIALES:
Espacio de filas Espacio de columnas Análisis Factorial de Correspondencias TRANSFORMACIONES INICIALES:
Análisis Factorial de Correspondencias EL REFERENCIAL: PROCESO DE DIAGONALIZACIÓN REPRESENTACIÓN DE FILAS REPRESENTACIÓN DE COLUMNAS SE TRATA DE DOS SUBESPACIOS DE MISMA NATURALEZA REGLAS DE TRANSICIÓN
Análisis Factorial de Correspondencias EFECTO DE LAS REGLAS DE TRANSICIÓN: Espacio de filas Espacio de columnas REPRESENTACIÓN BIPLOT
Análisis Factorial de Correspondencias EL REFERENCIAL: IMPORTANTE: A una tabla de contingencia se asocian dos referenciales. Uno se obtiene cuando perfiles fila son entendidos como individuos (y perfiles columna como variables) y la otra cuando perfiles columna son entendidos como individuos (y perfiles fila como variables). No obstante esto, se puede demostrar que ambos procesos de diagonalización producen la misma descomposición de la inercia, y que los espacios resultantes se encuentran fuertemente relacionados entre sí, por medio de las llamadas relaciones pseudobaricéntricas. Estas relaciones permiten, en definitiva, superponer los dos espacios obtenidos. En cada uno de los espacios se representan distancias Ji–cuadrado.
Análisis Factorial de Correspondencias REGLAS DE LECTURA E INTERPRETACIÓN: CALIDAD DE REPRESENTACIÓN CONTRIBUCIONES DISTANCIA AL ORIGEN Perfiles bien representados se observan siempre alejados del origen del sistema.
Sugerencias Bibliográficas • Daniel W.: Estadística con aplicaciones a las ciencias sociales y a la educación. McGraw-Hill. Mexico, 19997. • Canavos G.: Probabilidad y Estadística. Aplicaciones y métodos. Mc Graw Hill. México, 1995. • Hernández–Fernández–Baptista: Metodología de la Investigación. Mc Graw Hill. México, 1998.