360 likes | 539 Views
Diffusjon i metaller. Atomene vil diffundere i en retning som gjør at Gibbs fri energi for systemet reduseres Det er fem typer diffusjon i metaller: 1. sustitusjonell diffusjon 2. interstitiell diffusjon 3. Diffusjon langs dislokasjoner 4. Diffusjon langs korngrenser
E N D
Diffusjon i metaller • Atomene vil diffundere i en retning som gjør at Gibbs fri energi for systemet reduseres • Det er fem typer diffusjon i metaller: 1. sustitusjonell diffusjon 2. interstitiell diffusjon 3. Diffusjon langs dislokasjoner 4. Diffusjon langs korngrenser 5. Diffusjon langs overflater og andre typer av ”feil”
Diffusjon i et system A-B Up-hill diffusion
Substitusjonell diffusjonfcc-gitter: diffusjon på (111)-plan
Interstitiell diffusjon IOctahederplasser fcc -gitter bcc-gitter Karbonatomene er omgitt av et octaheder
Interstitiell diffusjon II • H, C, N i jerngitter (feritt-bcc og austenitt fcc) • H i Al-gitter (Al: fcc-gitter) (100)-plan i austenitt eller Al med ”hopp” av små atomer
Diffusjon i jern • Adolf Fick (1855): Fluksen av atomene er proporsjonal med gradienten i volumkonsentrasjonen: J1= - D1* dC1/dZ C-atomer
Fick’s første lov • J1= - D1* dC1/dZ J1 er fluksen av atomer av type 1(C-atomer i eksemplet) som passer gjennom en flate (enhet: g/cm2*s eller atomer/cm2*s) D1 = Diffusjonskoeffesienten dvs. proporsjonalitetskonstanten C1= volumkonsentrasjonen av atom nr.1 C1= X1 * (fraksjon * egenvekt) Minustegn fordi atomene strømmer mot områder med lavere konsentrasjon
Kontinuitetsligningen Areal A • Masse inn – masse ut = akkumulering J*A - { J*A + [ ((JA)/Z] * dZ } = - [ ((JA)/Z] * dZ • Hastighet inn av masse-Hastighet ut av masse = hastighets akkumulering • Kontinuitetsligningen
Fick’s annen lov • J1= - D1* dC1/dZ og • Fick’s lov Hvis D er konstant: Den generelle lov:
Diffusjon av karbon i jern II Startbetingelse: C=0 for x<0 C=C’ for x>0 Grensebetingelse: C(x=0,t)=C’/2 C(X=-,t) = 0 Lar metallet bestå av tynne skiver, αi tykke. Da er: Ved å la antall skiver gå til , vil αi gå mot 0. Da er: To lange jernbolter er sveiset sammen ved x=0. Venstre del er fri for karbon.
Diffusjon av karbon i jern II • Man substituerer = (x-α)/2(Dt) Definisjonen på feilfunksjonen (error function) Nå er: erf(z) = -erf(-z) og erf()=1. Det medfører:
Diffusjon av karbon i jern III Løsning:
Diffusjon av karbon i jern IV C=C0 C(Z,t) = Cs[1-(1-C0/Cs)*erf (Z/2Dt)] NB! Maks løselighet av karbon i jern er Cs
Diffusjon av karbon i jern V C(Z,t) = Cs[1-(1-C0/Cs)*erf (Z/2Dt)] La C0=0. For hvilket Z-verdi blir C=Cs/2? Det er: Cs/2 = Cs[1 - erf (Z0.5/2Dt)] Siden erf 0.477 = 0.5, får vi: Z0.5 = 0.954 Dt I mange tilfelle regner man med at atomer har diffundert en strekning av størrelse: roten av D*t
Diffusjon av karbon i jern VI Starter ved en temperatur over den eutektoide temperatur, og karbon på enden av en lang jernblokk. -Fe dannes først og deretter α-Fe som skissert. Fasegrensene gir konsentrasjonen av jern i de ulike posisjonene (C3,C2 og C1). Området med -Fe øker med tiden.
Substitusjonell diffusjon Når to ulike metaller sveises sammen, vil atomene fra de ulike metallene A (Cu) og B (Ni) diffundere med ulik hastighet inn i hverandre ved substitusjonell diffusjon. Setter man markører på overgangen, vil markørene bevege seg. Det kalles Kirkendalls effekt. Siden nikkel diffunderer raskest i det fremlagte eksempel, vil markørene bevege seg mot høyre, og kobergitteret vil bli større.
Substitusjonell diffusjon II • Hastigheten til markørene dvs. hastigheten til metallgitteret er: A) vm = (D1-D2) (dx1/dZ) • Den totale hastighet er summen av gitterhastighet og diffusjon alene: vtotal = vm + vD • Den totale fluksen av atom type 1, er lik: B) J1,total= C1(vm +vD) = C1vm – D1(dC1/dZ) • Den totale fluksen av atom type 2, er lik: • J2,total= C2(vm +vD) = C2vm – D2(dC2/dZ) Ligning A innsatt i ligning B og C: J1,total= -D2*C1*(dx1/dZ) + D1(C1*dx1/dZ-dC1/dZ) J1,total= -D2*x1*(dC1/dZ) – D1*x2*(dC1/dZ) idet x1 + x2 = 1
Substitusjonell diffusjon III • Darkens ligninger for substitusjonell diffusjon: J1,total= -(D1*x2 + D2*x1) * (dC1/dZ) D* (dC1/dZ) Tilsvarende for atomtype nr. 2: J2,total= -(D1*x2 + D2*x1) * (dC2/dZ) D* (dC2/dZ) Man kan bestemme de substitusjonelle diffusjonskoeffesientene med Grubes analyser og Matanos interface teknikk.
Drivkraft for diffusjon • Anta at vi har et system A-B med relativt få B-atomer • Det kjemiske potensiale for element i er: µi = (G/ni)T,P,nj • Den kjemiske kraften per i atom i Z-retning er: A) Fz = - (µi / Z ) • Mobilitet B er definert som: B= Hastighet atomer/ enhet anvendt kraft • Fluksen til komponent i er produktet av volumkonsentrasjon og hastighet: Ji = Ci * vi = Ci * Bi * Fi • Ved ligning A får vi: Ji = - Ci * Bi * (µi / Z )
Drivkraft for diffusjon II • Endringen i kjemisk potensial er: dµi = k T d ln ai • Innsatt i foregående ligning pluss bruk av Fick’s første lov: • Ji = - Ci * Bi * kT *(d ln ai / dZ ) = - Di * (dCi / dZ ) • Ved algebraisk manipulering og siden de ulike variable er deriverbare funksjoner: • Di = Bi * kT *(d ln ai / d ln Ci ) • Ved innføring av aktivitetskonstanten i = ai / xi der xi er den atomære fraksjons konsentrasjonen: • Di = Bi * kT *(1 + d ln i / d ln xi ) • (det er antatt en konstant molar tetthet) • For ideelle løsninger eller tynne løsninger er i konstant: Di = Bi * kT
Diffusjonskoeffesienter II Diffusjonskoeffisienten er en funksjon som avhenger av temperaturen: D = D0 ekp (-Q/RT) der Q= aktiveringsenergien D målt i cm2/s D er størst for smelte og interstitielle atomer
Diffusjonskoeffesienter III Diffusjon langs korn- grenser gir signifikant bidrag bare i finkornete materialer Thorium i wolfram
Interstitiell diffusjon IOctahederplasser fcc -gitter bcc-gitter Karbonatomene er omgitt av et octaheder
Diffusjon av interstitielle atomer • =hoppfrekvens • =antall ganger per sekund • som et atomer hopper til • naboposisjon • p= sannsynligheten for hopp • plan 1 til plan 2 • n1,n2= antall atomer per cm2 • på plan 1 og 2. • C1=n1/α og C2=n2/α • C2-C1= (n2-n1) /α • C2-C1= α C/Z C Z Z
Diffusjon av interstitielle atomer II • Antall atomer som hopper fra plan 1 til plan 2 i løpet av en tid t: n1 (p) t • Antall atomer som hopper fra plan 2 til plan 1 i løpet av en tid t: n2 (p) t • Fluksen av atomer som hopper fra plan 1 til plan 2 • J t = (p) (n2 -n1)t • Netto fluks av atomer som hopper fra plan 1 til plan 2 J = - α2p C/Z Sammenligning med Fick’s 1 lov gir: D= α2p fcc: bcc: α= a/2; p=1/6 D=a2/12α= a/2; p=1/6 D=a2/24
Diffusjon av interstitielle atomer III • Diffusjonskoeffesienten til karbon i austenitt (-Fe) er målt ved ulike temperaturer. Da kan man beregne hoppfrekvensen (T=925 °C) = 1.7 109 hopp/sek (T= 20 °C) = 2.1 10-9 hopp/sek Dette viser at karbonatomene er ekstremt aktive ved høy temperatur Hvor langt har atomene kommet etter n like hopp? Statistisk analyse viser at: Rn = r n
Diffusjon av interstitielle atomer IV • r2=2a2= 6D/= R2/n • Tiden t = antall hopp/antall hopp per sek = n/ Ligningene gir: 6Dt = R2 eller lengden karbonatomene har hoppet: R = 2.45 Dt Temp (°C) R(mm) total distanse (km) 925 1.3 3.9 20 1.4*10-9 0
Diffusjonsmekanismer • Diffusjon av interstitielle atomer • Det er gjerne små atomer i et metallgitter som C i Fe • Diffusjon av vakanser; selvdiffusjon (Al i Al) • Substitusjonell diffusjon ved hjelp av vakanser De ulike atomtyper kan hoppe med ulik frekvens og hastighet Vakanser må genereres i gitteret for eksempel ved generering av kantdislokasjoner i en Frank-Read kilde der dislokasjonene beveger seg ved klatring.
Prosesser og Arrhenius ligning • Reaksjonshastigheten R til en prosess: • R = A * e –Q/RT Q = aktiverings energien • Aktuelle prosesser: Diffusjon, Siging ved høy temperatur Kornvekst i metaller
Diffusjon av interstitielle atomer V • f= fraksjonen av atomer som har nok energi til å forandre posisjon i gitteret dvs. de har en fri energi G>G2 • Z = antall nærmeste naboer av interstitielle hull (voids) rundt et løsningsatom • v = vibrasjonsfrekvensen mot hver av de Z hullene • Hvis vi antar at et atom vil hoppe til naboposisjonen, om det har tilstrekkelig energi G>G2, vil hoppfrekvensen bli: = v * Z * f I følge statistisk mekanikk vil den fri energi til atomer følge en Maxwell-Bolzmanns lov. Følgelig vil fraksjonen av atomer med G>Gi:
Diffusjon av interstitielle atomer VI I følge statistisk mekanikk vil den fri energi til atomer følge en Maxwell-Bolzmanns lov. Følgelig vil fraksjonen av atomer med G>Gi: der N = totalt antall atomer Antall atomer som hopper over barrieren:
Diffusjon av interstitielle atomer VII • Fraksjonen som har tilstrekkelig energi til å forandre posisjon: • Fra Ficks lov ble diffusjonskoeffesienten bestemt lik: D= α2p eller D= α2 *p* (Z* v * f) = α2p (Z v * ekp[S/k])* ekp(-E/kt) Der Gibbs fri energi er: G = E-TS I ligningen er det siste leddet som varierer hurtig med temperaturen, entropien S varierer ikke meget.
Substitusjonell diffusjon • Atomer i løsning i et gitter beveger seg på gitterplasser ved hjelp av vakanser. Det er Z nærmeste naboer til et atom. • Antall tomme plasser på naboplasser, er gitt av antall vakanser: = v * Z * f * ekp(-Gv/kT) Diffusjonskoeffesienten D blir i dette tilfelle: D = α2p (Z v * ekp[(S + Sv)/k])* ekp[(-E - Ev)/kT] Her er den totale energien summen av energien til vakansene og aktiveringsenergien: Q = E + Ev Generelt betraktes Q som en empirisk konstant.