640 likes | 766 Views
Listening for the Dark. Harry Nelson UCSB. Plan. Massive Dark Matter Direct Detection Xenon CDMS Future. Metals (us). 0.01%. 0.5%. Visible Baryons. Dark Baryons. 5%. Cold Dark Matter (WIMPs?). 25%. Cosmological Constant . 70%. `We Declare a New Order’ (Joel Primack).
E N D
Listening for the Dark Harry Nelson UCSB
Plan • Massive Dark Matter • Direct Detection • Xenon • CDMS • Future Penn State Colloquium
Metals (us) 0.01% 0.5% Visible Baryons Dark Baryons 5% Cold Dark Matter (WIMPs?) 25% Cosmological Constant 70% `We Declare a New Order’(Joel Primack) Penn State Colloquium
v; = v/c r Penn State Colloquium
b = 0.488 ± 0.009 a M= (1.85 ± 0.06) 1030 kg Penn State Colloquium
Planets about sun Msun = (1.85 ± 0.06) 1030 kg Moons about Saturn MSaturn = (5.5 ± 0.2) 1026 kg Stars w/r Galaxy Center: v/c = constant 0.7 10-3 Penn State Colloquium
R is the distance from center v vis the speed (tangential) R Galactic Dark Matter Penn State Colloquium
Honma and Sofue, 1996 v 220 km/s :v0=180 km/s Without the Dark Halo (Binney & Tremaine) R What about our home galaxy (Milky Way)? Penn State Colloquium
Sun: moves in plane of disk v/c = 0.7 10-3 Particles in `halo’: 3-d = mc2 n 1/3 GeV/cm3 (1/2 of total mass density) Maxwellian/Gaussian (simple) v/c = 0.7 10-3 Milky Way: mainly a dark cloud Bulge Disk Penn State Colloquium
v/c = 0.7 10-3 We use Germanium, A=73, mc2=67.6 GeV; others: Si, S, I, Xe, W Design a Particle and an Experiment 0 v/c = 0.7 10-3 Neutral: cool particles neutral – , n, , K0, Z0, H0… ER½ mGec2 2 ½ 68 GeV ½ 10-6 20 keV x-ray energy ! Easy! Massive: Mc2100 GeV hinted at by accelerator data `Weak Scale’ Penn State Colloquium
Arguments for characteristic of weak interaction • Particle physics… chose Mc2 100 GeV, `Weak Scale’ • Big Bang… independently implies weak cross section as well… Coincidence(s)… or Clues ??? Penn State Colloquium
Donald H. Perkins, 1987 What is the weak interaction cross section? Penn State Colloquium
Rate governed by scattering cross section, Penn State Colloquium
0 A = # neutrons + # protons 0 Indistinguishable Density of States: Coherence, density of states enormous bonus! Scattering off a proton…. …. Hopeless! Penn State Colloquium
Rate of Main Background Rate about 103 / (kg-day) !!! Shield… but that radioactive too Strategies: DAMA… huge target mass (100 kg), look for astrophysical modulation CDMS… small target mass (few kg) distinguish electron from nucl. recoil Penn State Colloquium
Signal Shape MWIMP=100 GeV 10-42 cm2/nucleon A2 Silicon, Sulphur Germanium Iodine, Xenon Nucleus Recoils Er Slope: Maxwell-Boltzmann WIMPs in Galaxy Diffraction 0 Penn State Colloquium
Catalog of Direct Detection Experiments Indirect Detection: Super-Kamiokande, Amanda, Ice-Cube, HEAT, GLAST, Egret… Look for astrophysical neutrinos, gammas From WIMP annihilation Penn State Colloquium
Background Electron Recoils Er v/c 0.3 Sparse Energy Deposition Direct Detection: Signal and Main Background Signal Nucleus Recoils Er v/c 710-4 dense energy deposition efficiency low distinct energy scale 0 (calibrate: neutron) Differences the Basis of Particle ID Penn State Colloquium
ionization Q H phonons L scintillation IGEX, DRIFTI, II CDMS, EDELWEISS ZEPLIN II, III, MAX, XMAS, XENON CRESST I, PICASSO, COUPP NAIAD, ZEPLIN I, DAMA CRESST II, ROSEBUD Tim Sumner Penn State Colloquium
– Bernabei et al. – Arneodo et al. – Akimov et al. – Aprile et al. – LIP work Lindhard Hitachi E. Aprile et al., arXiv:astro-ph/0503621 Xenon – nuclear recoils give 1/7 scintillation/energy,compared to electron recoils (``quenching’’)…. Sets recoil energy scale Tim Sumner Penn State Colloquium
Nucl. Recoil Zeplin 1 – Scintillation Alone Electron Recoil 125 keV 30 keV 30 keV Nuclear Recoils – Faster Risetime… 3.2 kg Xe Risetime (ns) Penn State Colloquium
300 kg-days CDMS: 100 kg-days Zeplin-I Limit- Background Weakens 10-42 cm2 Penn State Colloquium
2-Phase (Liquid/Gas) Noble … Ar or Xe Nuclear Recoil S1 S2 S2 Electron Recoil S2 S1 S1 Penn State Colloquium
XENON Gamma + neutron source Gamma source Zeplin-II Zeplin-II Preliminary Preliminary Penn State Colloquium Aprile et al. 2005
Analysis…. • Appears scalable • However, unforeseen backgrounds are the rule as sensitivity increases • Promising… ZEPLIN-II and Xenon-10 soon deployed in deep sites Penn State Colloquium
ER10’s keV Holes Electrode Implants e- E 0 CDMS: Adapt Traditional Ionization Detector 1 cm Germanium (or Silicon) 7.6 cm ¼ kg (1/10 kg) What rate? (in, say, 1kg) Backgrounds? ….…. Gamma rays, neutrons, surface beta-decay Penn State Colloquium
Experiment CDMS (shallow) DAMA (old!) 1/10 9/10 Our Hunting Ground Weakly Interacting Massive Particle Theory SUSY, various constraints including Big Bang Gaitskell/Mandic Penn State Colloquium
DAMA – Exploit Annual Modulation Signal: higher rate in June, lower in December Background: constant in time Penn State Colloquium
CDMS Collaboration (Mar. 2002) Penn State Colloquium
CDMS Collaboration • Brown University • M.J. Attisha, R.J. Gaitskell, J-P. F. Thompson • Case Western Reserve University • D.S. Akerib, P. Brusov, C. Bailey, M.R. Dragowsky, D.D.Driscoll, S.Kamat, A.G. Manalaysay, T.A. Perera, R.W.Schnee, G.Wang • University of Colorado at Denver • M. E. Huber • Fermi National Accelerator Laboratory • D.A. Bauer, R. Choate, M.B. Crisler, R. Dixon, M. Haldeman, D. Holmgren, B. Johnson, W.Johnson, M. Kozlovsky, D. Kubik, L. Kula, B. Lambin, B. Merkel, S. Morrison, S. Orr, E.Ramberg, R.L. Schmitt, J. Williams, J. Yoo • Lawrence Berkeley National Laboratory • J.H Emes, R. McDonald, R.R. Ross, A. Smith • Santa Clara University • B.A. Young • Stanford University • P.L. Brink, B. Cabrera, J.P. Castle, • C.L. Chang, J. Cooley, M. Kurylowicz, • L. Novak, R. W. Ogburn, M. Pyle, T. Saab, • A. Tomada • University of California, Berkeley • J. Alvaro-Dean, M.S. Armel, M. Daal, J. Fillipini, A. Lu, V. Mandic, P.Meunier, N. Mirabolfathi, M.C.Perillo Isaac, W. Rau, B. Sadoulet, D.N.Seitz, B. Serfass, G. Smith, A. Spadafora, K. Sundqvist • University of California, Santa Barbara • R. Bunker, S. Burke, D.O. Caldwell, D. Callahan, R.Ferril, D. Hale, S. Kyre, R. Mahapatra, J.May, H. Nelson, R. Nelson, J. Sander, C.Savage, S.Yellin • University of Florida • L. Baudis, S. Leclerq • University of Minnesota • J. Beaty, P. Cushman, L. Duong, A. Reisetter Cryogenic Dark Matter Search Penn State Colloquium
Nuclear Recoil bad at making Ionization Holes e- Germanium more ionization! Need a second, `fair’ measure of deposited energy… sound! 0 Both deposit, say, 20 keV Penn State Colloquium
Our Detectors `Phonon sensor (4)’ (TES) Array of Transition Edge Sensors Ionization Electrodes (2) x-y-z imaging: from timing, sharing Z-coordinate, Ionization, Phonons ZIP Operate at 0.050 Kelvin Penn State Colloquium
quasiparticle trap Al W Transition-Edge Sensor (TES) Al Collector quasiparticle diffusion ~ 10mK Cooper Pair RTES () 4 3 Ge or Si phonons 2 1 normal T (mK) Tc ~ 80mK superconducting The Phonon Sensor R. Schnee Penn State Colloquium
Pulses 20 KeV Phonon (4) Charge (2) 0 300 0 300 Time (s) Time (s) 30 -30 -30 30 -30 30 Penn State Colloquium
Separation of the types of recoils (electron recoils) Neutrons cause nuclear recoils too! Another background… (nuclear recoils) Sound Penn State Colloquium
SUF Run 21 Germanium – Low Threshold 1.3 keV x-ray, L-shell Capture Shallow Site Neutron Background 10.4 keV Ga x-rays from 71Ge K-shell Capture R. Bunker Penn State Colloquium
Background Neutrons from Cosmic Ray Muons Limited our earlier results…moved to a deep mine Penn State Colloquium
Go Deep Underground to Evade Muons Penn State Colloquium
Deep Facility Soudan Mine Hosts: State of Minn., U Minn., Fermilab 690 meters underground 2090 meters water equivalent Penn State Colloquium
DAQ/Electronics RF-shielded Soudan II Clean room HVAC Mezzanine Mezzanine Front-end Electronics MINOS connecting tunnel Mechanical Detector Prep Shield Pumps, Clean Benches Icebox Fridge Cryogenics Down deep in the Soudan mine Penn State Colloquium
Outside In lead plastic scintillators outer polyethylene ancient lead inner polyethylene Penn State Colloquium
FET cards 4 K 0.6 K 0.06 K 0.04 K SQUID cards ZIP 1 (Ge) ZIP 2 (Ge) ZIP 3 (Ge) ZIP 4 (Si) ZIP 5 (Ge) ZIP 6 (Si) 14C 14C 14C A Cold Heart Results from first… poorer resolution Two `towers’ 6 detectors… 10 cm 4 Germanium (0.25 kg each), 2 Silicon (0.1 kg each) Penn State Colloquium
Calibration (133Barium) (e recoils) Phonons Ionization L. Baudis Energy, KeV Penn State Colloquium
Better Source, Calibration Ionization Phonons Penn State Colloquium
n Calib. (252Californium) (nuclear recoils) Reconstructed recoil energy, KeV S. Kamat Penn State Colloquium
Tower 1 Soudan Data First Run • 92 calendar days • 53 live days, 1 kg Germanium Second Run • 140 calendar days • 74 live days, 1.5 kg Germanium 0.6 kg Silicon • Double `Exposure’ Penn State Colloquium
Backgrounds often do FET cards 4 K 0.6 K 0.06 K 0.04 K WIMPs don’t scatter twice SQUID cards ZIP 1 (Ge) ZIP 2 (Ge) ZIP 3 (Ge) ZIP 4 (Si) ZIP 5 (Ge) ZIP 6 (Si) n, 0 14C 14C 14C Reject Multiple Interactions Penn State Colloquium
10.4 keV Gallium line Nuclear Recoils induced by a neutron source First Run After timing cuts, which reject external electrons Prior to timing cuts External e (address with timing cuts) B. Cabrera Penn State Colloquium
Electrode Implants z E `ZIP’ : `reconstruct’ z with start time, risetime External e : surface events, ionization missed External e decay contamination, escaping compton recoils Ionization not collected Germanium Penn State Colloquium