1 / 16

Half Adder - Modelling

Half Adder - Modelling. ETH Zürich | iGEM team 2006. ODE’s: Constitutive. A. A. u·k A. k A-Deg. d[A ]/dt = u· k A - [A]· k A-Deg simplified: d[A ]/dt = 0  [A] = const. (high/low dep. on input u). ODE’s: Induction. I. A. k I. k A. I + DNA. I · DNA. I · DNA + A. k -I.

lois-valdez
Download Presentation

Half Adder - Modelling

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Half Adder - Modelling ETH Zürich | iGEM team 2006

  2. ODE’s: Constitutive A A u·kA kA-Deg d[A]/dt = u·kA - [A]·kA-Deg simplified: d[A]/dt = 0  [A] = const. (high/low dep. on input u)

  3. ODE’s: Induction I A kI kA I + DNA I · DNA I · DNA + A k-I d[A]/dt = [I·DNA]·kA d[I]/dt = [I·DNA]·k-I – [I]·[DNA]·kI d[DNA]/dt = [I·DNA]·k-I – [I]·[DNA]·kI d[I·DNA]/dt = [I]·[DNA]·kI – [I·DNA]·k-I [I·DNA]+[DNA] = const.[I·DNA]+[I] = const.

  4. ODE’s: Repression kR R R + DNA R · DNA A k-R kA DNA DNA + A d[A]/dt = [DNA]·kA d[R]/dt = [R·DNA]·k-R – [R]·[DNA]·kR d[DNA]/dt = [R·DNA]·k-R – [R]·[DNA]·kR d[R·DNA]/dt = [R]·[DNA]·kR – [R·DNA]·k-R [R·DNA]+[DNA] = const.[R·DNA]+[R] = const.

  5. AND – 1 a PoPS E1-active A E1 PoPS e1 e2 E2 B PoPS b

  6. A B E2 E1 E2 E1 Out AND – 1 (ODE’s) uA kA k-E kE1-act E1-act kE1 kE kE2 kOut kB d[A]/dt = kAuA d[B]/dt = kBuB d[E1]/dt = kE1[A] - kE[E1][E2] + k-E[E1E2] d[E2]/dt = kE2[B] - kE[E1][E2] + k-E[E1E2] + kE1-act[E1E2] d[E1E2 ]/dt = kE[E1][E2] - k-E[E1E2] - kE1-act[E1E2] d[E1-act]/dt = kE1-act[E1 E2] d[Out]/dt = kout[E1-act] uB

  7. AND – 2 a PoPS A E1 PoPS i1 E1 E2 i2 E2 B PoPS b

  8. AND – 3

  9. m/([X]m-m) A B I2 I1 only qualitative! 1 Out [X]  AND – 3 (ODE’s) uA kI1,deg kI1 k’Out kOut,deg kI2 k’’Out kI2,deg uB d[A]/dt = kAuA d[B]/dt = kBuB d[I1]/dt = kI1 m1/([A]m1-m1) – kI1,deg[I1] d[I2]/dt = kI2 m1/([B]m1-m1) – kI2,deg[I1] d[Out]/dt = k’Outm3/([I1]m3-m3) k’’Outm4/([I2]m4 - m4) – kOut,deg[Out]

  10. AND – 4

  11. XOR – 1

  12. I’2 I2 I1 I’1 I1 I’1 I’2 I2 Out XOR – 1 (ODE’s) kI1,deg kI1 kA1 Question: Should kI1I‘1 and kI2I‘2 be modelled as reversible reactions? uA kI1I’1 kA2 kI’1,deg kOut,deg d[I1]/dt = kA1uA – kI1I’1[I1][I’1] – kI1,deg[I1] d[I’1]/dt = kA2uA – kI1I’1[I1][I’1] – kI’1,deg[I’1] d[I2]/dt = kB1uB – kI2I’2[I2][I’2] – kI2,deg[I2] d[I’2]/dt = kB2uB – kI2I’2[I2][I’2] – kI’2,deg[I’2] d[I1I’1]/dt = kI1I’1[I1][I’1] d[I2I’2]/dt = kI2I’2[I2][I’2] d[Out]/dt = kI1(1- m1/([I1]m1-m1)) + kI2(1- m2/([I2]m2 - m2)) – kOut,deg[Out] kI’2,deg kB2 uB kI2I’2 kI2 kB1 kI2,deg OR

  13. XOR – 2

  14. XOR – 2 (ODE’s)

  15. XOR – 3

  16. XOR – 3 (ODE’s)

More Related