1 / 6

DISTANCIA ENTRE DOS PUNTOS

DISTANCIA ENTRE DOS PUNTOS. DISTANCIA ENTRE DOS PUNTOS: Teorema : La distancia entre dos puntos A ( x 1 , y 1 , z 1 ) y B ( x 2 , y 2 , z 2 ) está dada por: d ( AB ) =. z. B. z 2 – z 1 = BQ.

lot
Download Presentation

DISTANCIA ENTRE DOS PUNTOS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. DISTANCIA ENTRE DOS PUNTOS

  2. DISTANCIA ENTRE DOS PUNTOS: Teorema: La distancia entre dos puntos A(x1, y1, z1) y B(x2, y2, z2)está dada por: d(AB) = z B z2 – z1 = BQ Demostración: Geométricamente, esta expresión es el resultado de calcular la diagonal de una “caja” por medio del Teorema de Pitágoras A y x2 – x1 = AP P Q c2 = a2 + b2 c y2 – y1 PQ a b x

  3. DISTANCIA ENTRE DOS PUNTOS: Teorema: La distancia entre dos puntos A(x1, y1, z1) y B(x2, y2, z2)está dada por: d(AB) = z c2 = a2 + b2 B z2 – z1 = BQ A (AQ)2 = (AP)2 + (PQ)2 y x2 – x1 = AP P Q (AB)2 = (AQ)2 + (BQ)2 y2 – y1 PQ (AB)2 = (AP)2 + (PQ)2+ (BQ)2 x

  4. EJEMPLO

  5. z Encontrar la distancia entre los puntos: A(6, 2, -3) y B(-1, 4, 5) B(-1, 4, 5) y x A(6, 2, -3)

More Related