1 / 38

Základy popisné statistiky

Základy popisné statistiky. aneb známe tři druhy lži: úmyslná neúmyslná statistika. popisn á statistika. cílem je zjednodušit nějaká data tak, abychom se v nich lépe vyznali důsledkem je ztráta informací! charakteristiky polohy a variability.

louis
Download Presentation

Základy popisné statistiky

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Základy popisné statistiky aneb známe tři druhy lži: • úmyslná • neúmyslná • statistika

  2. popisná statistika • cílem je zjednodušit nějaká data tak, abychom se v nich lépe vyznali • důsledkem je ztráta informací! • charakteristiky polohy a variability Statistika je jako bikini. Co odhaluje je zajímavé, co skrývá je podstatné. Aaron Levenstein

  3. průměrná teplota: 9.2°C minimum: 4°C maximum: 15°C rozsah: 11°C modus: 9°C medián: 9°C rozptyl: 5.1°C směrodatná odchylka: 2.3°C samotná data (11; 10; 10; 9; 8;……) = základní soubor N = počet prvků základního souboru = 30 (prvek = pozorování) Xi = hodnota i-tého prvku (X1=11; X16=13;…)

  4. histogram četností zajímá nás rozložení dané proměnné v celém souboru vývoj proměnné zajímá nás vývojový trend proměnné

  5. Různé typy dat • data na stupnici • nominální (kategoriální, klasifikační) • dané třídy (kategorie) • barva očí, typ podloží,…. • ordinální (pořadová) • mohu seřadit • známky ve škole, stupnice tvrdosti,… • intervalové • dané intervaly mezi jednotkami • nemají podíly (nemají jednoznačně danou nulu) • teplota • čas • cirkulární (pozor na průměry!) • podílové (poměrné) • jednoznačně daná nula • měření,….. Když má hlavu v sauně a nohy v ledničce, hovoří statistik o příjemné průměrné teplotě. Franz Josef Strauß

  6. základní popisné statistiky základní soubor: 4,5,6,8,12 • průměr • aritmetický • geometrický • harmonický

  7. vážený průměr • zobecnění aritmetického • zohledňuje důležitost některých pozorování • potřebuji hodnoty (x1, x2, x3,…) a jejich váhy (w1, w2, w3,….) 30 samic má průměr hmotnosti 60 kg, 20 samců má průměr 80 kg. Celkový průměr není 70 kg, ale

  8. základní popisné statistiky • modus • nejčastěji se vyskytující hodnota • min. modus = 1, max. modus = N • může jich být víc • odpovídá vrcholu histogramu četností • medián • polovina pozorování menší než medián, polovina větší • střed uspořádaného základního souboru • další kvantily – kvartily, percentily apod. (86% percentil říká, že 86% prvků leží pod touto hodnotou a 14% nad ní) • i pro pouze „seřazená“ data (na ordinální stupnici) – např. jídlo je vynikající (1), dobré (2), ucházející (3), bez chuti (4), nic moc (5), hnusné (6), vyvolávající zvracení (7) • Beaufortova stupnice síly větru, Mohsova stupnice tvrdosti apod. • v případě „ulítlé“ hodnoty lepší vypovídající hodnota než průměr

  9. základní popisné statistiky • pokud mám platy v podniku: • 14 520; 11 350; 12 645; 14 520; 13 562; 14 520; 32 458; 38 452; 10 235; 11 548; • „průměrný plat“ = 16 824 • medián = 13 562

  10. základní popisné statistiky základní soubor: 4,5,6,8,12 průměr = 7 • rozptyl (variance) • průměrná hodnota druhé mocniny odchylky od průměru • směrodatná odchylka • odmocnina z rozptylu • čím menší, tím nižší variabilita dat

  11. histogram četností

  12. normální rozdělení

  13. náhodný výběr • většinou nemáme k dispozici celý základní soubor (všechny mihule, klešťanky, brambory, deváťáky apod.) • provedeme tedy náhodný výběr, ten zkoumáme a na základě výběrového šetření se snažíme hypotetický základní soubor popsat • charakteristiky tedy (sofistikovaně) odhadujeme!!! • není snadné provést náhodný výběr

  14. charakteristiky výběru • počet prvků n • průměr se počítá stejně • rozptyl (variance) výběru jinak! • směrodatná odchylka výběru • variační koeficient – porovnává variabilitu nestejně velkých objektů (myš a slon) – bezrozměrné číslo

  15. směrodatná odchylka výběru • empirické pravidlo: většina hodnot se neodlišuje od průměru o více než jednu směrodatnou odchylku a skoro všechny hodnoty jsou v pásmu do dvou směrodatných odchylek od průměru. normální rozdělení:

  16. přesnost odhadu průměru • výběrový průměr = náhodná veličina! (náhodné výběry z jednoho základního souboru se liší) má také svůj rozptyl • z rozptylu průměru lze spočítat směrodatnou odchylku průměru = střední chyba průměru • nepopisuje variabilitu dat, ale přesnost odhadu

  17. náhodné výběry: vždy musím uvádět n, průměr, sm. odchylku ostatní podle potřeby

  18. grafy • vynikající prostředek pro zpřehlednění dat • také pro klamání čtenáře

  19. podle Biostatistika, Lepš, PřF

  20. podle Biostatistika, Lepš, PřF

  21. podle Biostatistika, Lepš, PřF

  22. http://alex.state.al.us/lesson_view.php?&print=friendly&id=26406http://alex.state.al.us/lesson_view.php?&print=friendly&id=26406 http://www.coolschool.ca/lor/AMA11/unit1/U01L02.htm

  23. vždy je třeba vědět z jakého základu se počítají procenta! • pozor na tvrzení typu: hodnota klesla o 10% (např. ze 40% na 30%  tedy ve skutečnosti o 25%!!!, ale o 10 procentních bodů)

  24. jak na to v excelu? • statistické funkce • PRŮMĚR, SMODCH, MODE, MEDIAN, VAR, ČETNOSTI,… (pozor – maticové vzorce – zaklínadlo Ctrl+Shift+Enter) • =SMODCH.VÝBĚR(F1:F16)/ODMOCNINA(POČET(F1:F16)) • grafy – spojnicové, sloupcové, koláčové • podle typu dat, záměru

  25. jak na to v excelu? • pro pokročilé funkce musíme aktivovat doplněk „analýza dat“

  26. histogram četnosti • velmi užitečný, zobrazuje přibližné rozdělení sledované proměnné • vizualizace frekvence dat

  27. program Statistica jednotlivé případy sledovaná proměnná

  28. Program Statistica (data viz cvic1.xls) Data zadávám jinak než v excelu!

  29. Program Statistica (data viz cvic1.xls) • Statistica mi deskriptivní statistiky vypíše při provádění statistických testů • nicméně mohu volat Statistika – Základní statistika/tabulky – Popisná statistika • zde mohu dát jen jednu kategorii – pokud jich mám více, zadám „select cases“

  30. Program Statistica (data viz cvic1.xls) • Statistica mi deskriptivní statistiky vypíše při provádění statistických testů • nicméně mohu volat Statistika – Základní statistika/tabulky – Popisná statistika • zde mohu dát jen jednu kategorii – pokud jich mám více, zadám „select cases“

  31. Program Statistica (data viz cvic1.xls) • v záložce rozšířené (advanced) vyberu, které charakteristiky chci zobrazit

  32. Program Statistica (data viz cvic1.xls) • Histogram – volám Grafy-histogramy

  33. Excel (data viz cvic1.xls) • Histogram – buď Analýza dat…. • anebo fce Četnosti + sloupcový graf (pozor na zaklínadlo Shift+Ctrl+Enter)

  34. Kontingenční tabulka • vizualizace kategoriálních dat

  35. zdroje a materiály • Lepš J.: Biostatistika • http://botanika.bf.jcu.cz/suspa/vyuka/statistika.php • Papáček M., Slipka J., 1997: Úvod do odborné práce (pro posluchače studia učitelství biologie). PF JČU, České Budějovice, 88 s.

More Related