1 / 9

TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Parabola. Vypracoval: Mgr. Lukáš Bičík. TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Parabola jako kuželosečka.

madison
Download Presentation

TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Parabola Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

  2. Parabola jako kuželosečka Parabolu jako kuželosečku tvoří průnik kuželové plochy a roviny svírající s osou kuželové plochy úhel stejný, jako je úhel mezi osou a stěnou kužele (α = β). β α

  3. Parabola jako množina bodů Parabolu lze definovat i jako množinu bodů v rovině: Parabola je množina všech bodů, které mají od dané přímky (řídící přímky – q) a daného bodu (ohniska – F) stejnou vzdálenost. Je-li F ohnisko a q řídící přímka, pak pro libovolný bod X na parabole platí |FX| = |qX|. q X3 X2 X1 F

  4. Parabola s osou || s x o – osa paraboly q q – řídící přímka F – ohnisko V – vrchol p = |Fq|– parametr paraboly (|FV| = |Vq| = p/2) p o V F

  5. Parabola s osou || s y o – osa paraboly o q – řídící přímka F – ohnisko V – vrchol p = |Fq|– parametr paraboly (|FV| = |Vq| = p/2) F p V q

  6. Rovnice paraboly Pokud má vrchol paraboly V souřadnice [m;n], lze parabolu vyjádřit vrcholovou rovnicí paraboly (vpravo je zobrazena orientace paraboly vzhledem k souřadným osám): (y – n)2 = 2p(x – m) (y – n)2 = –2p(x – m) (x – m)2 = 2p(y – n) (x – m)2 = –2p(y – n) Roznásobením a převedením členů na jednu stranu vznikne obecná rovnice paraboly: Ax2 + Bx + Cy + D = 0, resp. Ay2 + Bx + Cy + D = 0

  7. Převod obecné rovnice na vrcholovou Při odvozování obecné rovnice postupujeme obdobně jako u ostatních kuželoseček. Příklad: Převeďte do vrcholového tvaru obecnou rovnici paraboly 2x2 – 4x +2y – 9 = 0. Členy s x převedeme na jednu stranu, členy s y na druhou: 2x2 – 4x = –2y + 9 Vytkneme koeficient A a kvadratický výraz doplníme na čtverec (nezapomeneme přidat doplněný člen i na druhou stranu rovnice): 2(x2 – 2x + 1) = –2y + 9 + 2·1 Vytkneme z pravé strany a rovnici vydělíme koeficientem A: 2(x – 1)2 = –2(y – 5,5) (x – 1)2 = –(y – 5,5) Parabola má tedy vrchol v bodě V[1;5,5] a je orientována směrem dolů.

  8. Vzájemná poloha přímky a paraboly p1 Přímka může ležet mimo parabolu (přímka p1), potom s ní nemá žádný společný bod. Takové přímce se říká nesečna. Pokud přímka parabolu protíná ve dvou společných bodech (přímka p2) nazývá se sečna. p3 Pokud je přímka rovnoběžná s osou paraboly, protíná ji v jednom bodě (přímka p3) a nazývá se sečna rovnoběžná s osou paraboly. Pokud se přímka paraboly dotýká (přímka p4), nazývá se tečna. Rovnice tečny, která se paraboly dotýká v bodě T[x0;y0], je: T[x0;y0] p4 p2

  9. Parametrické vyjádření paraboly Obdobně jako má přímka v rovině parametrické vyjádření, má toto vyjádření i parabola: x = t y = a·t2 + b·t + c resp. x = a·t2 + b·t + c y = t kde t je reálné číslo.

More Related