1 / 7

BAĞINTI

BAĞINTI. T ANIM:. Boş olmayan A ve B kümeleri için, A×B nin her alt kümesine, Adan B ye bir bağıntı denir.A×B nin her alt kümesine de A dan A ya bir bağıntı denir. Not: n(A)= n, n(B)=m ise A dan B ye tanımlanan bağıntı sayısı 2 n.m dir.

Download Presentation

BAĞINTI

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. BAĞINTI T ANIM: Boş olmayan A ve B kümeleri için, A×B nin her alt kümesine, Adan B ye bir bağıntı denir.A×B nin her alt kümesine de A dan A ya bir bağıntı denir. Not: n(A)= n, n(B)=m ise A dan B ye tanımlanan bağıntı sayısı 2n.m dir. Örnek: A={a, b, c}, B={c, d} kümeleri veriliyor. A x B kümesinin bazı alt kümelerini alarak değişik bağıtılar yazalım. A dan B ye kaç tane bağıntı yazılabileceğini bulalım. Çözüm: A xB kümesini yazalım. A x B={ (a, c), (a, d), (b, c), (b, d), (c, c), (c, d)} dir. A x A nin alt küme sayısı ise, s(A)=3 s(B)=2 s(AxB)= 6 dır. A x B nin her alt kümesi A dan B ye bir bağıntıdır. A dan B ye yazılabilen bağıntı sayısı A x B kümesinin alt küme sayısı kadardır. 23x2= 64 tür. Eğer A dan A ya yazılabilecek bağıntı sayısını bulmamız gerekseydi 2 3x3 = 512 olacaktı

  2. TANIM: Boş olmayan A ve B kümeleri verilsin. R, Adan B ye bağıntı olsun. R bağıntısındaki ikililerin birinci bileşenleri ile ikinci bileşenleri yer değiştirerek oluşturulan bağıntıya,R bağıntısının tersi denir ve R-1 ile gösterilir. R ×B ise R-1={(y,x)/ (x,y) R} R:A B ise R-1=B A bir bağıntıdır. NOT: R and R-1 bağıntılarının grafiklerini aynı düzlemde y=x doğrusuna göre simetrik oldukları görülür. BAĞINTININ TERSİ

  3. BAĞINTININ GRAFİĞİ: TANIM: Adan B ye bir R bağıntısının ikili elemanlarının, analitik düzlemde karşılık geldiği noktalar kümesine, bağıntının grafiği denir.

  4. 1) YANSIMA ÖZELLİĞİ: R, A kümesinde tanımlanan bir bağıntı olsun.A kümesinin her x elemanı için,(x,x) R oluyorsa R bağıntısının yansıma özelliği vardır veya R yansıyandır. x A için, (x,x) R ise R yansıyandır. 2) SİMETRİ ÖZELLİĞİ: R,A kümesinde tanımlı bir bağıntı olsun. R bağıntısının her (x,y) elemanı için,(y,x) R oluyorsa,R bağıntısının simetri özelliği vardır veya R simetriktir denir. için (y,x) R ise simetriktir. BAĞINTININ ÖZELLİKLERİ

  5. TERS SİMETRİ ÖZELLİĞİ: R,Akümesi üzerinde tanımlı bir bağıntı olsun.R bağıntısının her(x,y) elemanı için (y,x) oluyorsa veya (x,y) R ve (y,x) R iken x=y oluyorsa,R bağıntısının ters simetri özelliği vardır veya R ters simetriktir denir. NOT: 1) Bir bağıntı ters simetri değilse simetrik; simetrik değilse ters simetriktir diyemeyiz. 2) Tek elemanlı bir bağıntı daima ters simetriktir.

  6. GEÇİŞME ÖZELLİĞİ: R, A kümesi üzerinde bir bağıntı olsun.Rnın elemanı için (y,z) R iken (x,z) R oluyorsa,R bağıntısının geçişme özelliği vardır veya R geçişkendir denir. ve (y,z) iken (x,z) ise R geçişkendir. NOT:1)Bir R bağıntısında (x,y) R iken y ile başlayan ikili yoksa bu ikili geçişkenliği bozmaz. 2)Tek elemanlı bir bağıntı daima geçişkendir. 3)Hem yansıyan,hem de simetrik bir bağıntı aynı zamanda geçişkendir.

  7. DENKLİK BAĞINTISI: A kümesinde tanımlanan bir R bağıntısının; YANSIMA SİMETRİ GEÇİŞME özellikleri varsa,R bağıntısına denklik bağıntısı denir. SIRALAMA BAĞINTISI: Bir A kümesi üzerinde tanımlanan bir R bağıntısının; YANSIMA TERS SİMETRİ GEÇİŞME özellikleri varsa, R bağıntısına sıralama bağıntısı denir.

More Related